首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcystis aeruginosa immobilized in a natural polymer was tested for its potential to remove Cu2+ ions from aqueous solution in a continuous, downflow packed columnar reactor. Various parameters like flow rate, bed height and contact time required for maximum removal of test metals by the immobilized Microcystis aeruginosa were optimized. An increase in bed height from 2 to 10 cm resulted in an apparent decrease in biosorption capacity from 8.94 to 5.34 mg g–1, but more Cu2+ solution was purified at the higher bed height. Efficiency of metal recovery from Cu2+-loaded biomass and its subsequent regeneration was also determined. Immobilized M. aeruginosa was found to be effective in Cu2+ removal from solution for up to 10 cycles of adsorption–desorption and 1 M HCl is very efficient desorbent for regeneration of Microcystis biomass for reuse.  相似文献   

2.
Biosorption of metal ions (Li+, Ag+, Pb2+, Cd2+, Ni2+, Zn2+, Cu2+, Sr2+, Fe2+, Fe3+ and Al3+) by Rhizopus nigricans biomass was studied. It was shown that metal uptake is a rapid and pH-dependent process, which ameliorates with increasing initial pH and metal concentrations. Different adsorption models: Langmuir, Freundlich, split-Langmuir and combined nonspecific-Langmuir adsorption isotherm were applied to correlate the equilibrium data. The maximum biosorption capacities for the individual metal ions were in the range from 160 to 460 mol/g dry weight. Scatchard transformation of equilibrium data revealed diverse natures of biomass metal-binding sites. The binding of metals was also discussed in terms of the hard and soft acids and bases principle. The maximum biosorption capacities and the binding constant of R. nigricans were positively correlated with the covalent index of metal ions.The following types of waste microbial biomass originating as by-products from industrial bioprocesses were tested for biosorption of metal ions: Aspergillus terreus, Saccharomyces cerevisiae, Phanerochaete chrysosporium, Micromonospora purpurea, M. inyoensis and Streptomyces clavuligerus. The determined maximum biosorption capacities were in the range from 100 to 500 mol/g dry weight. The biosorption equilibrium was also represented with Langmuir and Freundlich sorption isotherms.  相似文献   

3.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

4.
The Spirulina platensis biomass was characterized for its metal accumulation as a function of pH, external metal concentration, equilibrium isotherms, kinetics, effect of co-ions under free (living cells, lyophilized, and oven-dried) and immobilized (Ca-alginate and polyacrylamide gel) conditions. The maximum metal biosorption by S. platensis biomass was observed at pH 6.0 with free and immobilized biomass. The studies on equilibrium isotherm experiments showed highest maximum metal loading by living cells (181.0 +/- 13.1 mg Co(2+)/g, 272.1 +/- 29.4 mg Cu(2+)/g and 250.3 +/- 26.4 mg Zn(2+)/g) followed by lyophilized (79.7 +/- 9.6 mg Co(2+)/g, 250.0 +/- 22.4 mg Cu(2+)/g and 111.2 +/- 9.8 mg Zn(2+)/g) and oven-dried (25.9 +/- 1.9 mg Co(2+)/g, 160.0 +/- 14.2 mg Cu(2+)/g and 35.1 +/- 2.7 mg Zn(2+)/g) biomass of S. platensis on a dry weight basis. The polyacrylamide gel (PAG) immobilization of lyophilized biomass found to be superior over Ca-alginate (Ca-Alg) and did not interfere with the S. platensis biomass biosorption capacity, yielding 25% of metal loading after PAG entrapment. The time-dependent metal biosorption in both the free and immobilized form revealed existence of two phases involving an initial rapid phase (which lasted for 1-2 min) contributing 63-77% of total biosorption, followed by a slower phase that continued for 2 h. The metal elution studies conducted using various reagents showed more than 90% elution with mineral acids, calcium salts, and Na(2)EDTA with free (lyophilized or oven-dried) as well as immobilized biomass. The experiments conducted to examine the suitability of PAG-immobilized S. platensis biomass over multiple cycles of Co(2+), Cu(2+), and Zn(2+) sorption and elution showed that the same PAG cubes can be reused for at least seven cycles with high efficiency.  相似文献   

5.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

6.
Dead cells of Saccharomyces cerevisiae 54 were immobilized by entrappment in polyacrylonitrile. The beads obtained were used to adsorb copper in an up-flow fixed-bed column. The effect of polymer content and cell loading were studied to optimize the porosity and the efficiency in copper removal of the biosorbent beads in a batch system. The optimal concentration of the polyacrylonitrile was assumed to be 12%(w/v) and a concentration of 0.5 g cell dry weight in 1 g polymer was most effective in adsorption of Cu2+. The adsorption capacity of this biosorbent was 27 mg Cu2+/g dry biomass at 200 mg/l initial concentration of copper ions. Adsorption of Cu2+ in a batch system was studied using different initial concentrations of the solute. The optimal conditions in the up-flow column of the following parameters were determined: flow rate, bed height, and initial concentration of Cu2+ of the solutions. Results of fixed-bed biosorption showed that breakthrough and saturation time appeared to increase with the bed height, but decrease with the flow rate and the initial concentration. The linearized form of the Thomas equation was used to describe dynamic adsorption of metal ions. As a result, the adsorption capacity of the batch system and the column system was compared. Desorption of copper ions was achieved by washing the column biomass with 0.1 M HCl at an eluent flow rate of 1 ml/min. The reusability of the immobilized biomass was tested in five consecutive adsorption-desorption cycles. The regenerated beads retained over 45% of their original adsorption capacity after five A/D cycles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Adsorption for heavy metals via biomaterials such as fungal biomass presents a practical remediation technique for polluted water. Among all known filamentous fungi, Penicillium chrysogenum is widespread in nature and can serve as a biosorbent for heavy metals. In the current study, the ability of P. chrysogenum XJ-1 to remove copper (Cu2+) and chromium (Cr6+) from water was evaluated. The maximum biosorption capacity of XJ-1 for Cu2+ reached 42.83 ± 0.57 mg g?1 dry biomass at pH 5.0 after the equilibrium time of 1.5 h. The maximum biosorption capacity for Cr6+ at pH 3.0 reached 52.69 ± 1.68 mg g?1 dry biomass after the equilibrium time of 1.5 h. The biosorption data of XJ-1 biomass were well fitted to the Freundlich isotherm model and the pseudo-second-order Lagergren kinetic model. Laundry powder-treated and HCl-treated XJ-1 biomass significantly enhanced its adsorption capacity to Cu2+ and Cr6+, respectively. HCl and NaOH were suitable desorbents for Cu2+/Cr6+ loading biomass, respectively. Fourier transform infrared spectroscopy analyses revealed that hydroxyl, amine, and sulfonyl groups on the biosorbent contributed to binding Cu2+ and Cr6+ and that carbonyl and carboxyl groups were also vital binding sites of Cu2+. Scanning electron microscopy and energy-dispersive x-ray (SEM-EDX) analyses confirmed that considerable amounts of metals were precipitated on the cell surface of XJ-1. Our results suggested that XJ-1 might be used to purify multimetal-contaminated water. This low-cost and eco-friendly biomass of XJ-1 seems to have a broad use in the restoration of metal-contaminated water.  相似文献   

8.
The influence of HCl pretreatment (0.1 mM) on sorption ofCu2+ and Ni2+ by Chlorella vulgariswas tested using single and binary metal solutions. The optimal initial pH forsorption was 3.5 for Cu2+ and 5.5 for Ni2+. Second orderrate kinetics described well sorption by untreated and acid-pretreated cells.The kinetic constant qe (metal sorption at equilibrium) for sorptionof test metals from single and binary metal solutions was increased afterpretreatment of the biomass with HCl. The Langmuir adsorption isotherm wasdeveloped for describing the various results for metal sorption. In single metalsolution, acid pretreatment enhanced qmax for Cu2+ andNi2+ sorption by approximately 70% and 65%, respectively.Cu2+ and Ni2+ mutually interfered with sorption of theother metal in the binary system. The combined presence of Cu2+ andNi2+ led to their decreased sorption by untreated biomass by 19% and88%, respectively. However, acid-pretreated biomass decreased Cu2+and Ni2+ sorption by 15 and 22%, respectively, when both the metalswere present in the solution. The results suggest a reduced mutual interferencein sorption of Cu2+ and Ni2+ from the binary metal systemdue to the acid pretreatment. Acid-pretreated cells sorbed twice the amount ofCu2+ and ten times that of Ni2+ than the untreated biomassfrom the binary metal system. Acid pretreatment more effectively enhanced thesorption of Ni2+ form the binary metal solution. The total metalsorption by untreated and acid-pretreated biomass depended on theCu2+ : Ni2+ ratio in the binary metal system. Acidpretreatment of C. vulgaris could be an effective andinexpensive strategy for enhancing Cu2+ and Ni2+ sorptionfrom single and binary metal solutions.  相似文献   

9.
Abstract

This study evaluates the biosorption of copper by aerobic biomass that was selected from surface waters of the San Pedro River in Sonora, Mexico. Using a batch system, 73% biosorption of copper was obtained in 75 minutes. Continuous biosorption assays were carried out for 133 days in an ascending flow aerobic reactor packed with zeolite (AFAR-PZ) that was inoculated with a bacterial consortium. Strains were grown until 1g L?1 of biomass was obtained. Tests using continuous biosorption were performed as follows: (i) the addition of 50 mg Cu2+ L?1 without recirculation of biomass; (ii) the addition of 20 mg Cu2+ L?1without recirculation of biomass; and (iii) the biomass were recirculated with the addition of 20 mg Cu2+ L?1 to pH 3 to 4. The fourth and fifth assays varied pH between 4 and 5, with 20 mg Cu2+ L?1and the biomass recirculated. Biosorption capacity of the first and second assays was 96% on the first day of experimentation. During the third trial 97% of biosorption was obtained during 6 days and the process was improved by varying the pH. Copper biosorption equilibrium was investigated under the same operating conditions. Langmuir adsorption isotherms were used to fit experimental data. The biosorption capacity of aerobic biomass was 3.08 mmol g?1. It was demonstrated that this biomass is capable of biosorbing copper and this method has potential for the treatment of industrial effluents contaminated with heavy metals.  相似文献   

10.
The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algaeSargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptake of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoichometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2 + or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of rawS. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl/HCl solution at pH3.  相似文献   

11.
Biosorption of copper by Sargassum fluitans biomass in fixed-bed column   总被引:1,自引:0,他引:1  
Summary The behavior of native and protonated Sargassum fluitans seaweed biomass packed in a fixed-bed was examined during a continuous removal of Cu2+ from 35 mg/L aqueous solution at pH 5.0. The capacity of native and protonated biomass, based on the dry weight of the native biomass, were determined to be 61.5 and 54.1 mg/g, respectively. During the saturation of the native biomass with heavy metal, first Na+ and K+, followed by Mg2+ and Ca2+, were eluted from the fixed-bed before the breakthrough time of the Cu2+. The pressure drop across the column varied with the ionic composition of the effluent from the bed, yielding an average permeability coefficient of 2.7 .10-12m2. The void fraction of the interstices in the bed was estimated to be 0.27. No light metals were eluted from the column containing protonated biomass, and the pressure drop remained constant throughout the saturation.  相似文献   

12.
ABSTRACT

Two strains of thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus, were employed to investigate the biosorption of heavy metals including Cd2+, Cu2+, Co2+, and Mn2+ ions. The effects of different biosorption parameters such as pH (2.0–10.0), initial metal concentrations (10.0–300.0 mg L?1), amount of biomass (0.25–10 g L?1), temperature (30–80°C), and contact time (15–120 min) were investigated. Concentrations of metal ions were determined by using an inductively coupled plasma optical emission spectrometry (ICP-OES). Optimum pHs for Cd2+, Cu2+, Co2+, and Mn2+ biosorption by Geobacillus thermantarcticus were found to be 4.0, 4.0, 5.0, and 6.0, respectively. For Anoxybacillus amylolyticus, the optimum pHs for Cd2+, Cu2+, Co2+, and Mn2+ biosorption were found to be 5.0, 4.0, 5.0, and 6.0, respectively. The Cd2+, Cu2+, Co2+, and Mn2+ removals at 50 mg L?1 in 60 min by 50 mg dried cells of Geobacillus thermantarcticus were 85.4%, 46.3%, 43.6%, and 65.1%, respectively, whereas 74.1%, 39.8%, 35.1%, and 36.6%, respectively, for Anoxybacillus amylolyticus. The optimum temperatures for heavy metal biosorption were near the optimum growth temperatures for both strains. Scatchard plot analysis was employed to obtain more compact information about the interaction between metal ions and biosorbents. The plot results were further studied to determine if they fit Langmuir and Freundlich models.  相似文献   

13.
The present work deals with the biosorption performance of dried and non-growing biomasses of Exiguobacterium sp. ZM-2, isolated from soil contaminated with tannery effluents, for the removal of Cd2+, Ni2+, Cu2+, and Zn2+ from aqueous solution. The metal concentrations studied were 25 mg/l, 50 mg/l, 100 mg/l, 150 mg/l and 200 mg/l. The effect of solution pH and contact time was also studied. The biosorption capacity was significantly altered by pH of the solution. The removal of metal ions was conspicuously rapid; most of the total sorption occurred within 30 min. The sorption data have been analyzed and fitted to the Langmuir and Freundlich isotherm models. The highest Qmax value was found for the biosorption of Cd2+ at 43.5 mg/g in the presence of the non-growing biomass. Recovery of metals (Cd2+, Zn2+, Cu2+ and Ni2+) was found to be better when dried biomass was used in comparison to non-growing biomass. Metal removal through bioaccumulation was determined by growing the bacterial strain in nutrient broth amended with different concentrations of metal ions. This multi-metal resistant isolate could be employed for the removal of heavy metals from spent industrial effluents before discharging them into the environment.  相似文献   

14.
This research highlights the possibility of employing a fermentation industry waste (Corynebacterium glutamicum) for the removal of nickel(II) ions from aqueous solution. Furthermore, it necessitates the importance of detailed examinations on the possible differences in the biosorption performance, even for the same biomass, but from different origins. Two types of C. glutamicum, obtained from different industrial sources, were used in this study. With respect to nickel speciation and biosorption performance, pH 6 was identified as an optimal condition. Of the two types of C. glutamicum used, the biomass with excess negatively charged groups performed well in the binding of Ni2+ ions. To enhance the feasibility of using the biomass in column mode, as well as its reuse for multiple cycles, C. glutamicum was immobilized in a polysulfone matrix. Both the free and immobilized biomasses performed relatively well, with maximum experimental uptakes of 111.4 and 102.4 mg g−1, respectively. An up-flow packed column loaded with immobilized biomass was employed for the removal of Ni2+ ions. The column performed well in the biosorption of nickel(II), and exhibited a delayed and favorable breakthrough curve, with Ni2+ uptake and percentage removal of 48.1 mg g−1 biomass and 60.4%, respectively.  相似文献   

15.
Deng L  Zhu X  Wang X  Su Y  Su H 《Biodegradation》2007,18(4):393-402
Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol−1 by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C–O could combine strongly with Cu2+.  相似文献   

16.
A marine bacterial strain putatively identified asBacillus thuringiensis strain DM55, showed multiple heavy metal resistance and biosorption phenotypes. Electron microscopic studies revealed that DM55 cells are encased in anionic cell wall polymers that can immobilize discrete aggregates of cations. Factors affecting cell surface affinity for metal cations, monitored by means of Cd2+ binding capability, are investigated. The mechanisms of cadmium resistance and Cd2+ biosorption by the bacterium appeared to be inducible and coincident. Medium components affecting metal removal under cadmium-stressed growth conditions were explored based on the application of two sequential multi-factorial statistical designs. Concentrations of potassium phosphates and peptone were the most significant variables. Optimized culture conditions allowed DM55 cells grown in the presence of 0.25 mM CdCl2 to remove about 79% of the metal ions within 24 h with a specific biosorption capacity of 21.57 mg g–1 of biomass. Both fresh and dry cells of DM55 prepared under cadmium-free optimal nutrient condition were also able to biosorb Cd2+. In addition to the concentration of phosphate in the medium, KinA, a major phosphate provider in the phosphorelay of Bacillus cells, was also demonstrated to regulate the magnitude of cell surface affinity for cadmium ions.  相似文献   

17.
In this investigation, we report on the biosorption of Pb (II) from aqueous solutions by the nonliving biomass of the micro-alga (cyanobacterium) Spirulina platensis. Propagation of the micro-alga was carried out in outside oblong raceway ponds. The biomass was cleaned, dried and used for the investigation. The effects of pH, adsorbent dose, temperature, initial concentration of Pb (II), and contact time on the adsorption of lead by the dry biomass were studied. The experiments were carried out in 250 ml conical flasks containing 100 ml of test solutions using an orbital incubator at 150 rpm. Concentrations of the metal before and after the experiments were measured using Atomic Absorption Spectrophotometer. Very high levels of Pb (II) removal (>91%) were obtained. The optimum conditions for maximal adsorption by S. platensis were found to be pH 3; 2 g of adsorbent dose; incubation at 26°C; 100 mg/l of lead initial concentration and 60 minutes of contact time. The experimental data fitted well with Freundlich isotherm equation with R2 values greater than 0.97. Based on our results, we recommend the utilization of S. platensis biomass for heavy metal removal from aqueous solutions.  相似文献   

18.
Arthrospira (Spirulina) platensis was tested for biosorption properties. Preliminary experiments concerning biosorption kinetics were performed on Cr(III) ions. Equilibrium of biosorption was tested for Cr(III), Mn(II) and Mg(II) ions, since these elements are crucial for animals with metabolic disorders. In our study, Spirulina was proposed as a feed additive for animals suffering from diseases characterized by insulin dysregulation, abnormal adipose distribution and a high risk for laminitis. Maximum biosorption capacity of A. platensis, determined from Langmuir equation, was 45.2 for Cr(III), 44.3 for Mn(II) and 42.0 mg/g for Mg(II) ions. Biosorption of Mg(II) ions by microalga has never been studied so far. Finally, the raw and enriched microalgal biomass was examined by ICP-OES to determine its multielamental analysis before and after biosorption, FTIR to indicate functional groups that participated in biosorption and SEM-EDX to illustrate the binding of metal ions on the surface of algal biomass. ICP-OES showed that the content of elements significantly increased in the enriched A. platensis. FTIR spectroscopy evidenced that biosorption of metal ions was mainly due to carboxylate groups present on the microalgal cell wall. SEM analysis clearly showed that biosorption occurred. Arthrospira platensis turned out to be a good biosorbent of metal ions.  相似文献   

19.
Experiments were conducted studying the removal of Cd2+ from water via biosorption using Rhodotorula sp. Y11. The effects of temperature and initial pH of the solution on biosorption were studied. Caustic and heat treatments showed different influences on the biosorption capacity, and the highest metal uptake value (19.38 mg g−1) was obtained by boiling treated yeast cells. The presence of competing cations, such as Ag+, Cu2+, and Mg2+, except Na+ ions, significantly interfered with the metal uptake. Results indicate that the Langmuir model gave a better fit to the experimental data than the Freundlich equation. The q 10 value was 11.38 mg g−1 for Cd2+ uptake by Y11. Chemical modifications of the biomass demonstrated that carboxyl and amide groups play an important role in Cd2+ biosorption.  相似文献   

20.
Azotobacter vinelandii was better than eitherDerxia gummosa orRhizobium trifolii for sorption of UO 2 2+ . Its maximum binding capacity was 0.25 mmol UO 2 2+ /g dry biomass with an affinity constant of 333 l/mmol at pH 4.1 according to the Langmuir model. In a semisynthetic medium,A. vinelandii showed the highest sorption capacity in the early stationary phase. The binding of UO 2 2+ , Cu2+, Ca2+ and Zn2+ was affected by the pH of the solution. With HCl as eluent, virtually all the sorbed UO 2 2+ was released. The presence of Cu2+, Cd2+, Ca2+, and Zn2+ inhibited the UO 2 2+ biosorption whereas Mg2+ and K+ had no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号