首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating disease in rice worldwide. The resistance gene Xa7, which provides dominant resistance against the pathogen with avirulence (Avr) gene AvrXa7, has proved to be durably resistant to BB. A set of SSR markers were selected from the “gramene” database based on the Xa7 gene initial mapping region on chromosome 6. These markers were used to construct a high-resolution genetic map of the chromosomal region surrounding the Xa7 gene. An F2 mapping population with 721 highly susceptible individuals derived from a cross between the near isogenic lines (NILs) IRBB7 and IR24 were constructed to localize the Xa7 gene. In a primary analysis with eleven polymorphic SSR markers, Xa7 was located in approximately the 0.28-cM region. To walk closer to the target gene, recombinant F2 individuals were tested using newly developed STMS (sequence tagged microsatellite) markers. Finally, the Xa7 gene was mapped to a 0.21-cM interval between the markers GDSSR02 and RM20593. The Xa7-linked markers were landed on the reference sequence of cv. Nipponbare through bioinformatics analysis. A contig map corresponding to the Xa7 gene was constructed. The target gene was assumed to span an interval of approximately 118.5-kb which contained a total of fourteen genes released by the TIGR Genome Annotation Version 5.0. Candidate-gene analysis of Xa7 revealed that the fourteen genes encode novel domains that have no amino acid sequence similar to other cloned Xa(xa) genes. Shen Chen and Zhanghui Huang are contributed equally to this work.  相似文献   

2.
Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombinant inbred lines (RILs) and 1,944 F2 plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F2 population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region.  相似文献   

3.
A simple and random genome deletion method combining insertion sequence (IS) element IS31831 and the Cre/loxP excision system generated 42 Corynebacterium glutamicum mutants (0.2–186 kb). A total of 393.6 kb (11.9% of C. glutamicum R genome) coding for 331 genes was confirmed to be nonessential under standard laboratory conditions. The deletion strains, generated using only two vectors, varied not only in their lengths but also the location of the deletion along the C. glutamicum R genome. By comparing and analyzing the generated deletion strains, identification of nonessential genes, the roles of genes of hitherto unknown function, and gene–gene interactions can be easily and efficiently determined. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

5.
Plant disease resistant (R) genes are frequently clustered in the genome. The diversity of members in a complex R-gene family may provide variation in resistance specificity. Rice Xa3/Xa26, conferring resistance to Xanthomonas oryzae pv. oryzae (Xoo) encodes a leucine-rich repeat (LRR) receptor kinase-type protein and belongs to a multigene family, consisting of Xa3/Xa26, MRKa, MRKc and MRKd in rice cultivar Minghui 63. MRKa and MRKc are intact genes, while MRKd is a pseudogene. Complementary analyses showed that MRKa and MRKc could not mediate resistance to Xoo when regulated by their native promoters, but MRKa not MRKc conferred partial resistance to Xoo when regulated by a strong constitutive promoter. Plants carrying truncated XA3/XA26, which lacked the kinase domain, were compromised in their resistance to Xoo. However, the kinase domain of MRKa could partially restore the function of the truncated XA3/XA26 in resistance. MRKa and MRKc showed similar expression pattern as Xa3/Xa26, which expressed only in the vascular systems of different tissues. The expressional characteristic of MRKa and MRKc perfectly fits the function of genes conferring resistance to Xoo, a vascular pathogen. These results suggest that although MRKa and MRKc cannot mediate bacterial blight resistance nowadays, they may be once effective genes for Xoo resistance. Their expressional characteristic and sequence similarity to Xa3/Xa26 will provide templates for generating novel recognition specificity to face the evolution of Xoo. In addition, both LRR and kinase domains encoded by Xa3/Xa26 and MRKa are the functional determinants and MRKa-mediated resistance is dosage-dependent. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

7.
Defense responses triggered by dominant and recessive disease resistance ( R) genes are presumed to be regulated by different molecular mechanisms. In order to characterize the genes activated in defense responses against bacterial blight mediated by the recessive R gene xa13, two pathogen-induced subtraction cDNA libraries were constructed using the resistant rice line IRBB13—which carries xa13 —and its susceptible, near-isogenic, parental line IR24. Clustering analysis of expressed sequence tags (ESTs) identified 702 unique expressed sequences as being involved in the defense responses triggered by xa13; 16% of these are new rice ESTs. These sequences define 702 genes, putatively encoding a wide range of products, including defense-responsive genes commonly involved in different host-pathogen interactions, genes that have not previously been reported to be associated with pathogen-induced defense responses, and genes (38%) with no homology to previously described functional genes. In addition, R -like genes putatively encoding nucleotide-binding site/leucine rich repeat (NBS-LRR) and LRR receptor kinase proteins were observed to be induced in the disease resistance activated by xa13. A total of 568 defense-responsive ESTs were mapped to 588 loci on the rice molecular linkage map through bioinformatic analysis. About 48% of the mapped ESTs co-localized with quantitative trait loci (QTLs) for resistance to various rice diseases, including bacterial blight, rice blast, sheath blight and yellow mottle virus. Furthermore, some defense-responsive sequences were conserved at similar locations on different chromosomes. These results reveal the complexity of xa13 -mediated resistance. The information obtained in this study provides a large source of candidate genes for understanding the molecular bases of defense responses activated by recessive R genes and of quantitative disease resistance.Electronic Supplementary Material Supplementary material is available in the online version of this article at The first two authors contributed equally to this workCommunicated by R. Hagemann  相似文献   

8.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

9.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

10.
Initially, molecular techniques were used to detect and distinguish Plasmodiophora pathotypes in soil. Meanwhile, chromosomes from 2.2 Mb to 680 kb are characterized and the total genome size is estimated to be approximately 20 Mb. Furthermore, the genomic gene structure and the cDNA structure of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches for clubroot research.  相似文献   

11.
Liu CW  Lin CC  Chen JJ  Tseng MJ 《Plant cell reports》2007,26(10):1733-1744
The objectives of this research were first to isolate plastid gene sequences from cabbage (Brassica oleracea L. var. capitata L.), and to establish the chloroplast transformation technology of Brassica. A universal transformation vector (pASCC201) for Brassica chloroplast was constructed with trnVrrn16S (left) and trnItrnArrn23S (right) of the IRA region as a recombination site for the transformed gene. In transforming plasmid pASCC201, a chimeric aadA gene was cloned between the rrn16S and rrn23S plastid gene borders. Expression of aadA confers resistance to spectinomycin and streptomycin antibiotics. The uidA gene was also inserted into the pASCC201 and transferred into the leaf cells of cabbage via particle gun mediated transformation. Regenerated plantlets were selected by 200 mg/l spectinomycin and streptomycin. After antibiotic selection, the regeneration percentage of the two cabbage cultivars was about 2.7–3.3%. The results of PCR testing and Southern blot analysis confirmed that the uidA and aadA genes were present in the chloroplast genome via homologously recombined. Northern blot hybridizations, immunoblotting and GUS histochemical assays indicated that the uidA gene were stable integrated into the chloroplast genome. Foreign protein was accumulated at 3.2–5.2% of the total soluble protein in transgenic mature leaves. These results suggest that the expression of a variety of foreign genes in the chloroplast genome will be a powerful tool for use in future studies.  相似文献   

12.
The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair.  相似文献   

13.
We describe a novel extension of the Genomic Matching Technique (GMT) that defines haplotypes of the mannose binding lectin (MBL) region in Zebrafish (D. rerio). Four ancestral haplotypes have been identified to date, with at least one of these demonstrating a significant increase in resistance to L. anguillarum. MBL activates the lectin pathway of the complement system and stimulates the development of the complement cascade and the Membrane Attack Complex. Polymorphisms in humans have been associated with increased susceptibility and severity to a number of pathogenic organisms. As teleosts have a relatively immature acquired immune system, polymorphisms within MBL and other innate defence genes are likely to be critical in defining their susceptibility/resistance to various pathogenic organisms. We report multiple copies of MBL-like genes in D. rerio, with up to three copies tightly linked within a cluster spanning ∼15 kb on chromosome 2. Genomic analysis suggests that duplication, retroviral insertion and possibly gene mutation and/or deletion have been key factors in the evolution of this cluster. Molecular analysis has revealed extensive polymorphism, including at least five distinct amplicons and haplospecific gene copy number variation. This study demonstrates polymorphism within a critical component of the teleost innate immune system. The polymorphisms and the haplotypes encoding the unique variants are likely to be informative in defining susceptibility/resistance to infectious agents commonly encountered within aquatic environments. Future investigations will define other important haplotypes and transfer the knowledge to other finfish species, thereby enabling selection of broodstock for the aquaculture industry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120–250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5′-CAGGGTG-3′) and AT-rich region on the internal bases for ITRs-transposase interaction.  相似文献   

15.
In vertebrate development the Dickkopf protein family carries out multiple functions and is represented by at least four different genes with distinct biological activities. In invertebrates such as Drosophila and Caenorhabditis, Dickkopf genes have so far not been identified. Here we describe the identification and characterization of a Dickkopf gene with a deduced amino acid sequence closely related to that of chicken Dkk-3 in the basal metazoan Hydra. HyDkk-3 appears to be the only Dickkopf gene in Hydra. The gene is expressed in the gastric region in nematocytes at a late differentiation stage. In silico searches of EST and genome databases indicated the absence of Dkk genes from the protostomes Drosophila and Caenorhabditis, whereas within the deuterostomes, a Dkk-3 gene could be identified in the genome of the urochordate Ciona intestinalis. The results indicate that at an early stage of evolution of multicellularity Dickkopf proteins have already played important roles as developmental signals. They also suggest that vertebrate Dkk-1, 2 and 4 may have originated from a common ancestor gene of Dkk-3.H. Fedders and R. Augustin contributed equally to this workEdited by D. Tautz  相似文献   

16.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

17.
It has been shown previously that the rolC gene from Agrobacterium tumefaciens gene was stably and highly expressed in 15-year-old Panax ginseng transgenic cell cultures. In the present report, we analyze in detail the nucleotide composition of the rolC and nptII (neomycin phosphotransferase) genes, which is the selective marker used for transgenic cell cultures of P. ginseng. It has been established that the nucleotide sequences of the rolC and nptII genes underwent mutagenesis during cultivation. Particularly, 1–4 nucleotide substitutions were found per sequence in the 540 and 798 bp segments of the complete rolC and nptII genes, respectively. Approximately half of these nucleotide substitutions caused changes in the structure of the predicted gene product. In addition, we attempted to determine the rate of accumulation of these changes by comparison of DNA extracted from P. ginseng cell cultures from 1995 to 2007. It was observed that the frequency of nucleotide substitutions for the rolC and nptII genes in 1995 was 1.21 ± 0.02 per 1,000 nucleotides analyzed, while in 2007, the nucleotide substitutions significantly increased (1.37 ± 0.07 per 1,000 nucleotides analyzed). Analyzing the nucleotide substitutions, we found that substitution to G or to C nucleotides significantly increased (in 1.9 times) in the rolC and nptII genes compared with P. ginseng actin gene. Finally, the level of nucleotide substitutions in the rolC gene was 1.1-fold higher when compared with the nptII gene. Thus, for the first time, we have experimentally demonstrated the level of nucleotide substitutions in transferred genes in transgenic plant cell cultures.  相似文献   

18.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
MUG1 is a MULE transposon-related domesticated gene in plants. We assessed the sequence diversity, neutrality, expression, and phylogenetics of the MUG1 gene among Oryza ssp. We found MUG1 expression in all tissues analyzed, with different levels in O. sativa. There were 408 variation sites in the 3886 bp of MUG1 locus. The nucleotide diversity of the MUG1 was higher than functionally known genes in rice. The nucleotide diversity (π) in the domains was lower than the average nucleotide diversity in whole coding region. The π values in nonsynonymous sites were lower than those of synonymous sites. Tajima D and Fu and Li D* values were mostly negative values, suggesting purifying selection in MUG1 sequences of Oryza ssp. Genome-specific variation and phylogenetic analyses show a general grouping of MUG1 sequences congruent with Oryza ssp. biogeography; however, our MUG1 phylogenetic results, in combination with separate B and D genome studies, might suggest an early divergence of the Oryza ssp. by continental drift of Gondwanaland. O. longistaminata MUG1 divergence from other AA diploids suggests that it might not be a direct ancestor of the African rice species. These authors contributed equally to this work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号