首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

2.
Thrombospondin-1 (TSP-1) is a matrix protein that has been implicated in mechanisms of tumor progression. Our laboratory previously showed that the CSVTCG (cys-ser-val-thr-cys-gly) sequence of TSP-1 functioned as a tumor cell adhesion domain and CSVTCG peptides as well as an anti-peptide antibody possessed anti-metastatic activity in a murine model of lung metastasis. In a subsequent study, a putative TSP-1 binding protein from lung carcinoma was isolated by CSVTCG-peptide affinity chromatography. In this study, we present the full-length cDNA of this binding protein isolated from a prostate cancer cell (PC3-NI) cDNA library. The purified recombinant protein, termed angiocidin, is a potent inhibitor of tumor growth of Lewis Lung carcinoma in vivo and tumor invasion and angiogenesis in vitro. In addition, the recombinant protein inhibits tumor and endothelial cell proliferation and induces apoptosis. The activity of angiocidin both in vivo and in vitro is partially dependent on its TSP-1 binding activity, since an angiocidin deletion mutant missing a high affinity-binding site for TSP-1 failed to inhibit tumor growth in vivo and was less active in its anti-tumor and anti-angiogenic activities in vitro. These results suggest that the anti-tumor activity of TSP-1 reported in many studies may be mediated in part by binding proteins such as angiocidin. Such proteins may function as tumor-suppressor proteins, which limit the growth of tumors by inhibiting angiogenesis and cell matrix interaction.  相似文献   

3.
Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment.  相似文献   

4.
《MABS-AUSTIN》2013,5(6):1195-1204
Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment.  相似文献   

5.
Angiogenesis is a key step in organ development and remodeling during embryogenesis or tissue regeneration. Some pathological events such as tumor growth or diabetic retinopathy also lead to angiogenesis formation. Several molecules have already been identified as promoting angiogenesis in vivo. Whether their bioactivity is mediated by other angiogenic growth factors or not is still unclear. We identified and purified recently a new angiogenic growth factor. Its unique specificity for vascular endothelial cells led us to provisionally name it vasculotropin (VAS). We describe the biochemical properties of VAS and its biological functions. Structural data showed that VAS is related to the SIS family. In vivo VAS was recognized as an inducer of angiogenesis and vascular permeability. In vitro, despite a moderate action on proliferation, VAS strongly stimulates the cell migration. The screening of the presence of cellular receptors and VAS production showed that the cells which bind VAS do not synthesize it, whereas the cells which synthesize VAS do not bind it. Thus, VAS seems to act through a paracrine pathway. We also present data suggesting that VAS has a lymphokine activity.  相似文献   

6.
Due to its essential roles in angiogenesis, Notch pathway has emerged as an attractive target for the treatment of pathologic angiogenesis. Although both activation and blockage of Notch signal can impede angiogenesis, activation of Notch signal may be more promising because it was shown that long-term Notch signal blockage resulted in vessel neoplasm. However, an in vivo deliverable Notch ligand with highly efficient Notch-activating capacity has not been developed. Among all the Notch ligands, Delta-like4(Dll4) is specifically involved in angiogenesis. In this study, we generated a novel soluble Notch ligand h D4 R, which consists of the Delta-Serrate-Lag-2 fragment of human Dll4 and an arginine-glycine-aspartate(RGD) motif targeting endothelial cells(ECs). We demonstrated that h D4 R could bind to ECs through its RGD motif and effectively triggered Notch signaling in ECs. Further, we confirmed that h D4 R could suppress angiogenesis in vitro as manifested by network formation assay and sprouting assay. More importantly, h D4 R efficiently repressed neonatal retinal angiogenesis and laser-induced choroidal neovascularization(CNV) as well in vivo. In conclusion, we have developed an in vivo deliverable Notch ligand h D4 R, which suppresses angiogenesis both in vitro and in vivo, thus providing a new approach to tackle excessive angiogenesis relevant disease such as CNV.  相似文献   

7.
Traditional Chinese medicinal herbs are a rich source of compounds with reported anti-inflammatory and anti-carcinogenic effects. Growing evidence shows the codependence of chronic inflammation and angiogenesis, and the potential benefits of targeting angiogenesis in the treatment of chronic inflammation and targeting inflammation in the treatment of diseases with impaired angiogenesis. We hypothesized that the anti-inflammatory activity of the natural compounds may owe at least some of its efficacy to their anti-angiogenic activity and hence we investigated the anti-angiogenic activity of these compounds in vivo in zebrafish embryos and in vitro in human umbilical vein endothelial cells (HUVECs). Nobiletin, a polymethoxylated flavonoid from citrus fruits, showed anti-angiogenic activity in both assays. Nobiletin inhibited the formation of intersegmental vessels (ISVs) in live transgenic zebrafish embryos expressing green fluorescent protein (GFP) in the vasculature. Cell cycle analysis of dissociated zebrafish embryo cells showed that nobiletin induced G0/G1 phase accumulation in a dose-dependent manner in GFP-positive endothelial cells. Nobiletin also dose-dependently induced VEGF-A mRNA expression. In HUVECs, nobiletin inhibited endothelial cell proliferation and, to a greater extent, tube formation in a dose-dependent manner. As in the in vivo study, nobiletin induced G0/G1 cell cycle arrest in HUVECs. However, this arrest was not accompanied by an increase in apoptosis, indicating a cytostatic effect of nobiletin. This study, for the first time, identifies nobiletin as having potent anti-angiogenic activity and suggests that nobiletin has a great potential for future research and development as a cytostatic anti-proliferative agent.  相似文献   

8.
Tissue inhibitors of metalloproteinases (TIMPs) regulate tumor growth, progression, and angiogenesis in a variety of experimental cancer models and in human malignancies. Results from numerous studies have revealed important differences between TIMP family members in their ability to inhibit angiogenic processes in vitro and angiogenesis in vivo despite their universal ability to inhibit matrix metalloproteinase (MMP) activity. To address these differences, a series of structure-function studies were conducted to identify and to characterize the anti-angiogenic domains of TIMP-2, the endogenous MMP inhibitor that uniquely inhibits capillary endothelial cell (EC) proliferation as well as angiogenesis in vivo. We demonstrate that the COOH-terminal domain of TIMP-2 (T2C) inhibits the proliferation of capillary EC at molar concentrations comparable with those previously reported for intact TIMP-2, while the NH2-terminal domain (T2N), which inhibits MMP activity, has no significant anti-proliferative effect. Interestingly, although both T2N and T2C inhibited embryonic angiogenesis, only T2C resulted in the potent inhibition of angiogenesis driven by the exogenous addition of angiogenic mitogen, suggesting that MMP inhibition alone may not be sufficient to inhibit the aggressive neovascularization characteristic of aberrant angiogenesis. We further mapped the anti-proliferative activity of T2C to a 24-amino acid peptide corresponding to Loop 6 of TIMP-2 and show that Loop 6 is a potent inhibitor of both embryonic and mitogen-stimulated angiogenesis in vivo. These findings demonstrate that TIMP-2 possesses two distinct types of anti-angiogenic activities which can be uncoupled from each other, the first represented by its MMP-dependent inhibitory activity which can inhibit only embryonic neovascularization and the second represented by an MMP-independent activity which inhibits both normal angiogenesis and mitogen-driven angiogenesis in vivo. In addition, we report, for the first time, the discovery of Loop 6 as a novel and potent inhibitor of angiogenesis.  相似文献   

9.
HARP (heparin affin regulatory peptide) is a growth factor displaying high affinity for heparin. In the present work, we studied the ability of human recombinant HARP as well as its two terminal peptides (HARP residues 1-21 and residues 121-139) to promote angiogenesis. HARP stimulates endothelial cell tube formation on matrigel, collagen and fibrin gels, stimulates endothelial cell migration and induces angiogenesis in the in vivo chicken embryo chorioallantoic membrane assay. The two HARP peptides seem to be involved in most of the angiogenic effects of HARP. They both stimulate in vivo angiogenesis and in vitro endothelial cell migration and tube formation on matrigel. We conclude that HARP has an angiogenic activity when applied exogenously in several in vitro and in vivo models of angiogenesis and its NH(2) and COOH termini seem to play an important role.  相似文献   

10.
Zebrafish (Danio rerio) represents a powerful model system in cancer research. Recent observations have shown the possibility to exploit zebrafish to investigate tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Experimental models have been established in zebrafish adults, juveniles, and embryos, each one with its own advantages and disadvantages. Novel genetic tools and high resolution in vivo imaging techniques are also becoming available in zebrafish. It is anticipated that zebrafish will represent an important tool for chemical discovery and gene targeting in tumor angiogenesis. This review focuses on the recently developed tumor angiogenesis models in zebrafish, with particular emphasis to tumor engrafting in zebrafish embryos.  相似文献   

11.
The multisubunit microtubule motor, cytoplasmic dynein, targets to various subcellular locations in eukaryotic cells for various functions. The cytoplasmic dynein heavy chain (HC) contains the microtubule binding and ATP binding sites for motor function, whereas the intermediate chain (IC) is implicated in the in vivo targeting of the HC. Concerning any targeting event, it is not known whether the IC has to form a complex with the HC for targeting or whether the IC can target to a site independently of the HC. In the filamentous fungus Aspergillus nidulans, the dynein HC is localized to the ends of microtubules near the hyphal tip. In this study, we demonstrate that our newly identified dynein IC in A. nidulans is also localized to microtubule ends and is required for HC's localization to microtubule ends in living cells. With the combination of two reagents, an HC loss-of function mutant and the green fluorescent protein (GFP)-fused IC that retains its function, we show that the IC's localization to microtubule ends also requires HC, suggesting that cytoplasmic dynein HC-IC complex formation is important for microtubule end targeting. In addition, we show that the HC localization is not apparently altered in the deletion mutant of NUDF, a LIS1-like protein that interacts directly with the ATP-binding domain of the HC. Our study suggests that, although HC-IC association is important for the targeting of dynein to microtubule ends, other essential components, such as NUDF, may interact with the targeted dynein complex to produce full motor activities in vivo.  相似文献   

12.
13.
《MABS-AUSTIN》2013,5(5):957-968
Angiogenesis is one of the most important processes for cancer cell survival, tumor growth and metastasis. Vascular endothelial growth factor (VEGF) and its receptor, particularly VEGF receptor-2 (VEGFR-2, or kinase insert domain-containing receptor, KDR), play critical roles in tumor-associated angiogenesis. We developed TTAC-0001, a human monoclonal antibody against VEGFR-2/KDR from a fully human naïve single-chain variable fragment phage library. TTAC-0001 was selected as a lead candidate based on its affinity, ligand binding inhibition and inhibition of VEGFR-2 signal in human umbilical vein endothelial cells (HUVEC). TTAC-0001 inhibited binding of VEGF-C and VEGF-D to VEGFR-2 in addition to VEGF-A. It binds on the N-terminal regions of domain 2 and domain 3 of VEGFR-2. It could inhibit the phosphorylation of VEGFR-2/KDR and ERK induced by VEGF in HUVEC. TTAC-0001 also inhibited VEGF-mediated endothelial cell proliferation, migration and tube formation in vitro, as well as ex vivo vessel sprouting from rat aortic rings and neovascularization in mouse matrigel model in vivo. Our data indicates that TTAC-0001 blocks the binding of VEGFs to VEGFR-2/KDR and inhibits VEGFR-induced signaling pathways and angiogenesis. Therefore, these data strongly support the further development of TTAC-0001 as an anti-cancer agent in the clinic.  相似文献   

14.
This study aimed to investigate the biological response to hypoxia as a stimulus, as well as exercise- and vibration-induced shear stress, which is known to induce angiogenesis. Twelve male cyclists (27.8 +/- 5.4 yr) participated in this study. Each subject completed four cycle training sessions under normal conditions (NC) without vibration, NC with vibration, normobaric hypoxic conditions (HC) without vibration, and HC with vibration. Each session lasted 90 min, and sessions were held at weekly intervals in a randomized order. Five blood samples (pretraining and 0 h post-, 0.5 h post-, 1 h post-, and 4 h posttraining) were taken from each subject at each training session. Hypoxia was induced by a normobaric hypoxic chamber with an altitude of 2,500 m. The mechanical forces (cycling with or without vibration) were induced by a cycling ergometer. The parameters VEGF, endostatin, and matrix metalloproteinases (MMPs) were analyzed using the ELISA method. VEGF showed a significant increase immediately after the exercise only with exogenously induced vibrations, as calculated with separate ANOVA analysis. Endostatin increased after training under all conditions. Western blot analysis was performed for the determination of endostatin corresponding to the 22-kDa cleavage product of collagen XVIII. This demonstrated elevated protein content for endostatin at 0 h postexercise. MMP-2 increased in three of the four training conditions. The exception was NC with vibration. MMP-9 reached its maximum level at 4 h postexercise. In conclusion, the results support the contention that mechanical stimuli differentially influence factors involved in the induction of angiogenesis. These findings may contribute to a broader understanding of angiogenesis.  相似文献   

15.
The efficient inhibition of angiogenesis is considered as a promising strategy for the treatment of angiogenesis-related diseases including cancer. Herein, we report that embellistatin, a bicyclic ketone compound known as a microtubule polymerization inhibitor, exhibits anti-angiogenic activity. Embellistatin inhibited in vitro angiogenesis of bovine aortic endothelial cells (BAECs) such as bFGF-induced invasion and tube formation as well as bFGF-induced mouse corneal angiogenesis in vivo. Notably, embellistatin exhibited stronger inhibition activity for the growth of BAECs than that of normal and cancer cell lines. Cell cycle analysis revealed that the compound arrests cell cycle at G2/M phase, which is associated with the increased expression of p21(WAF1) and p53 partly. These results demonstrate that embellistatin may serve the basis for the development of new anti-angiogenic agents.  相似文献   

16.
Previous studies indicated that HC Blue 1 induced heptocellular carcinomas in B6C3F1 mice whereas the structurally similar nitroaromatic amine HC Blue 2 did not. In an attempt to elucidate the biochemical mechanisms responsible for their different carcinogenic potencies, comparative metabolism and genetic toxicity studies were undertaken. Eighteen-hour urinary recovery of administered radioactivity was equivalent for both compounds following oral gavage (100 mg/kg) in female B6C3FI mice. By HPLC analysis, HC Blue 1 yielded 3 major polar metabolite peaks, one of which was susceptible to glucuronidase. In vivo metabolism of HC Blue 2 yielded a single major metabolite peak which was not hydrolyzed by glucuronidase. Metabolism by B6C3FI mouse hepatocytes yielded metabolite profiles which were qualitatively similar to the profiles observed after in vivo metabolism. HC Blue 1 was metabolized by hepatocytes at approximately twice the rate of HC Blue 2. Cytogenetic evaluations of mouse hepatocytes after in vitro treatment indicated HC Blue 1 was more potent than HC Blue 2 in inducing chromosomal aberrations while both chemicals showed weak activity for inducing sister-chromatid exchanges. Furthermore, in the V79 cell metabolic cooperation assay, HC Blue I, but not HC Blue 2, inhibited cell-to-cell communication suggesting a non-genotoxic activity may be present for HC Blue 1. It is concluded that qualitative and quantitative differences exist in the metabolism of these compounds and that genotoxic as well as nongenotoxic effects may contributed to their different carcinogenic potencies.Abbreviations BrdU Bromodeoxyyuridine - DMN Dimethylnitrosamine - DMSO Dimethylsulfoxide - EGF Epidermal growth factor - FBS Fetal bovine serum - G-6-P Glucose-6-phosphate - HBSS Hank's balanced salt solution - HC Blue 1 [2,2-((Methylamino)-3-nitrophenyl)-imino)bis; ethanol] - HGPRT Hypoxanthine-guanine phosphoriboxyl transferase - HPLC High performance liquid chromatography - MEM Minimal essential medium - S-9 9000 X gravity supernatant fraction - SCE Sister chromatid exchanges - TGR Thioguanine resistant cells - TGS Thioguanine sensitive cells  相似文献   

17.
Hwang J  Son KN  Kim CW  Ko J  Na DS  Kwon BS  Gho YS  Kim J 《Cytokine》2005,30(5):254-263
A number of chemokines induce angiogenesis and endothelial cells express several chemokine receptors. To date, only a limited number of CC chemokines for CCR1 have been reported to induce angiogenic responses. We investigated the ability of CCL23 (also known as MPIF-1, MIP-3, or CKbeta8) to promote angiogenesis, which induces chemotaxis of immune cells through CCR1. CCL23 promoted the chemotactic migration and differentiation of endothelial cells, and neovascularization in the chick chorioallantoic membrane. An N-terminal truncated form of CCL23 was at least 100-fold more potent than its intact form and was comparable to that of FGF in the angiogenic activities. Treatment with either pertussis toxin or anti-CCR1 antibody completely inhibited the CCL23-induced endothelial cell migration, indicating that endothelial cell migration was mediated through CCR1. CCL23 didn't promote the migration of HT1080 human fibrosarcoma cells that did not express CCR1. Our results suggest a role of CCL23 in angiogenesis in vitro as well as in vivo.  相似文献   

18.
Apolipoprotein(a) [apo(a)] contains the largest numbers of kringle domains identified to date. Of these, apo(a) kringle V shows significant sequence homology with plasminogen kringle 5, which is reported to be a potent angiogenesis inhibitor. To determine the effects of apo(a) kringle V on angiogenesis, it was expressed as a soluble protein (termed rhLK8) in Pichia pastoris and its in vitro and in vivo anti-angiogenic properties were examined. rhLK8 inhibited the migration of human umbilical vein endothelial cells in vitro in a dose-dependent manner. This function was associated with the down-regulation of the activation of focal adhesion kinase and the inhibition of the consequent formation of actin stress fibers/focal adhesions. rhLK8 also inhibited new capillary formation in vivo, as assessed by the chick chorioallantoic membrane assay and the Matrigel plug assay. These results indicate that rhLK8 may be an effective angiogenesis inhibitor both in vitro and in vivo.  相似文献   

19.
Angiogenesis, the formation of new blood vessels, is critical in many normal and pathological processes such as development, reproduction, tumor growth, and metastasis. Recently, exposure to moderate‐intensity static magnetic fields (1 mT to 1 T) has attracted much attention for its potential therapeutic value as a noninvasive intervening method. Nevertheless, the effects of moderate‐intensity and spatial gradient static magnetic fields (GSMF) on angiogenesis have not received enough attention. In this study, the effects of GSMF (0.2–0.4 T, 2.09 T/m, 1–11 days) on angiogenesis were investigated both in vitro and in vivo. An MTT assay was used as an in vitro method to detect the proliferation ability of human umbilical veins endothelial cells (HUVECs). Two kinds of in vivo models, a chick chorioallantoic membrane (CAM) and a matrigel plug, were used to detect the effects of GSMF on angiogenesis. The results showed that the proliferation ability of HUVECs was significantly inhibited 24 h after the onset of exposure. With regard to the CAM model, vascular numbers in the CAM that was continuously exposed to the GSMF were all less than those in normal condition. In accordance with the gross appearance, the contents of hemoglobin in the models exposed to GSMF for 7–9 days were also less. In addition, similar to the CAM model, the results of vascular density and hemoglobin contents in the matrigel plug also demonstrated that the GSMF exposure for 7 or 11 days inhibited vascularization. These findings indicate that GSMF might inhibit or prevent new blood vessels formation and could be helpful for the treatment of some diseases relevant to pathological angiogenesis. Bioelectromagnetics 30:446–453, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Progressive renal tubulointerstitial fibrosis is a common final pathway of nearly all forms of chronic kidney disease. Many efforts have been done to arrest or prevent renal tubulointerstitial fibrosis but with little progress. Nowadays, few therapeutic agents are available in clinical use. Norcantharidin (NCTD) is of great benefit in anticancer treatment, by inducing cell apoptosis, inhibiting cell proliferation, in addition, blocking tumor metastasis and angiogenesis in cancer, whereas little attention is given to its relationship with other diseases. Our recent studies demonstrated that NCTD was protective against renal tubulointerstitial fibrosis both in vivo and in vitro. The underlying mechanisms may include modulation of TGF-β1/Smad signal cascade, inhibition of protein serine/threonine phosphatases (PPP) as well as NF-κB. NCTD may be a promising therapeutic agent for renal tubulointerstitial fibrosis. In the present article, we will review the action of NCTD in renal tubulointerstitial fibrosis and discuss its possible mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号