首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrotransposons (RTNs) constitute informative molecular markers for plant species as a result of their ability of integrating into a multitude of loci throughout the genome and thereby generating insertional polymorphisms between individuals. Inter-retrotransposon amplified polymorphisms (IRAPs) and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) are marker systems based on long terminal repeats (LTRs) RTNs, developed for plants, that have been widely used for evolution, genetic diversity, DNA fingerprinting of cultivars and varieties, genetic mapping linkage and for detection of genetic rearrangements induced by polyploidisation. In the present study, we aimed to analyse the genetic variability among 48 Old Portuguese bread wheat cultivars using both IRAP and REMAP markers. Five IRAP and six REMAP primer combinations were used. IRAP produced 103 polymorphic fragments in a total of 113 bands. On average, 22.6 bands were amplified per IRAP primer combination. The bands ranged in size from 250 to 5000 bp. The REMAP primer combinations allowed the amplification of 53 bands, 51 of them polymorphic. An average of 8.8 REMAP bands was scored per primer combination. The REMAP bands ranged from 250 to 3000 bp. Both marker systems presented high percentages of polymorphism. However, IRAP markers were suitable for detecting genetic variability at the individual level and did not differentiate higher taxa. The REMAP maker system allowed the clustering by botanical variety and identified most of the homonym bread wheat cultivars.  相似文献   

2.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

3.
Retrotransposon markers have been demonstrated to be powerful tools for investigating linkage, evolution and genetics diversity in plants. In the present study, we identified and cloned three full-size TRIM (terminal-repeat retrotransposon in miniature) group retrotransposon elements from apple (Malus domestica) cv. ‘Antonovka’, the first from the Rosaceae. To investigate their utility as markers, we designed primers to match the long terminal repeats (LTRs) of the apple TRIM sequences. We found that PCR reactions with even a single primer produced multiple bands, suggesting that the copy number of these TRIM elements is relatively high, and that they may be locally clustered or nested in the genome. Furthermore, the apple TRIM primers employed in IRAP (inter-retrotransposon amplified polymorphism) or REMAP (retrotransposon-microsatellite amplified polymorphism) analyses produced unique, reproducible profiles for 12 standard apple cultivars. On the other hand, all seven of the sport mutations in this study were identical to their mother cultivar. Genetic similarity values calculated from the IRAP/REMAP analyses or the STMS (sequence tagged microsatellite sites) analysis were generally comparable. PAUP cluster analysis based on IRAP and REMAP markers in apple and Japanese quince generated an NJ tree that is in good accordance with both a tree based on SMTS markers and the origin of the studied samples. Our results demonstrate that, although they do not encode the proteins necessary to carry out a life cycle and are thereby non-autonomous, TRIMs are at least as polymorphic in their insertion patterns as conventional complete retrotransposons. Kristiina Antonius-Klemola, Ruslan Kalendar are the first two authors contributed equally to this work  相似文献   

4.
A rye doubled haploid (DH) mapping population (Amilo × Voima) segregating for pre-harvest sprouting (PHS) was generated through anther culture of F1 plants. A linkage map was constructed using DHs, to our knowledge, for the first time in rye. The map was composed of 289 loci: amplified fragment length polymorphism (AFLP), microsatellite, random amplified polymorphic DNA (RAPD), retrotransposon-microsatellite amplified polymorphism (REMAP), inter-retrotransposon amplified polymorphism (IRAP), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers, and extended altogether 732 cM (one locus in every 2.5 cM). All of the seven rye chromosomes and four unplaced groups were formed. Distorted segregation of markers (P ≤ 0.05) was detected on all chromosomes. One major quantitative trait locus (QTL) affecting α-amylase activity was found, which explained 16.1% of phenotypic variation. The QTL was localized on the long arm of chromosome 5R. Microsatellites SCM74, RMS1115, and SCM77, nearest to the QTL, can be used for marker-assisted selection as a part of a rye breeding program to decrease sprouting damage.  相似文献   

5.
A nonautonomous element of 624 bp, called RetroCl1 (Retroelement Colletotrichum lindemuthianum 1), was identified in the plant pathogenic fungus Colletotrichum lindemuthianum. RetroCl1 contains terminal direct repeats (223 bp) that are surrounded by CTAGT sequences. It has a short internal domain of 178 bp and shows characteristics of terminal-repeat retrotransposon in miniature (TRIM) family. We used RetroCl1 sequence to develop molecular markers for the Colletotrichum genus. IRAP (Inter-Retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism) markers were used to analyze the genetic diversity of C. lindemuthianum. Fifty-four isolates belonging to different races were used. A total of 45 loci were amplified. The Nei index showed significant differences among the populations divided according to race, indicating that they are structured according to pathotype. No clear correlation between IRAP and REMAP markers with pathogenic characterization was found. C. lindemuthianum has high genetic diversity, and the analysis of molecular variance showed that 51% of variability is found among the populations of different races. The markers were also tested in different Colletotrichum species. In every case, multiple bands were amplified, indicating that these markers can be successfully used in different species belonging to the Colletotrichum genus.  相似文献   

6.
Inter-retrotransposon amplified polymorphisms (IRAPs) and retrotransposon-microsatellite amplified polymorphisms (REMAPs) were used to detect retrotransposon integration events and genetic diversity in 101 Iranian bread wheat (Triticum aestivum L.) cultivars and breeding lines. The 9 IRAP primers amplified 128 loci, and 20 REMAP primers amplified 263 loci. Percentage of polymorphic loci, average expected heterozygosity, number of effective alleles, and Shannon’s information index for the REMAP markers were slightly higher than those for the IRAP markers. The same estimated parameters calculated for native and nonnative retrotransposons were not considerably different. A Mantel test between IRAP and REMAP cophenetic matrices evidenced no significant correlation. Cluster analysis based on the Dice similarity coefficient and complete linkage algorithm using IRAP+REMAP loci identified five groups among the genotypes studied that could be applied as crossing parents in T. aestivum breeding programs.  相似文献   

7.
Retrotransposons are ubiquitous components of plants genomes, making them useful molecular markers for genetic diversity studies. We used inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers to assess genetic diversity and survey activity of LTR retrotransposon elements in 106 sunflower (Helianthus annuus L.) genotypes from different research centers. We found 118 (out of 128) and 113 (out of 120) polymorphic loci using 14 IRAP and 14 REMAP primers, respectively. The Mantel test between IRAP and REMAP cophenetic matrices revealed low correlation (r = 0.55) between them. Dice similarities based on combined (IRAP + REMAP) data ranged from 0.34 to 0.93 among (“11 × 12” and “F1250/03”) and (“HA335B” and “TMB51”) genotypes, respectively. Classification of genotypes using the Dice similarity matrix derived from IRAP+REMAP data based on the un-weighted pair-group method using the arithmetic average algorithm resulted in nine distinct groups. The studied genotypes were divided into seven groups considering their origins (research centers). Classification of genotypes can be useful to assess the genetic variation and gene flow between and within research centers. Analysis of molecular variance based on IRAP+REMAP data revealed a higher level of genetic variation within (94%) than between (6%) research centers. A high amount of gene flow was detected among USDA, ASGROW, and ENSAT groups. Because environmental factors have no influence on molecular markers, the construction of heterotic groups based on retrotransposon markers will be useful for the selecting of parents with a high probability of producing superior hybrids.  相似文献   

8.
Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.  相似文献   

9.
Inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) techniques were successfully applied, for the first time, to analyze genetic diversity among 92 ginger landraces collected from north-western Himalayan region of India. Six IRAP primer/combinations generated 75 loci with an average of 12 loci/primer displaying an overall polymorphism of 95.95 %. On the other hand, twenty five REMAP primer combinations produced 414 loci with 96.5 % polymorphism. IRAP showed maximum Rp (5.39) and PIC (0.28) values, while the same in REMAP was observed to be 10.92 and 0.34. Cluster analysis using Jaccard’s similarity coefficient for IRAP and REMAP data ranged between 0.21 to 1.0 and 0.21 to 0.85, respectively distinguishing all the genotypes with diverse genetic makup. The results also confirmed the presence of sukkula retrotransposon (RT6) in the ginger genome which effectively acted as genetic marker revealing high regional genetic diversity in the ginger gene pool. The study will help in giving insight to the genetic constitution of vegetatively grown ginger crop and for its further utilization in improvement, conservation and management programmes.  相似文献   

10.
Genetic and epigenetic modifications resulting from different genomes adjusting to a common nuclear environment have been observed in polyploids. Sequence restructuring within genomes involving retrotransposon/microsatellite-rich regions has been reported in triticale. The present study uses inter-retrotransposon amplified polymorphisms (IRAP) and retrotransposon microsatellite amplified polymorphisms (REMAP) to assess genome rearrangements in wheat–rye addition lines obtained by the controlled backcrossing of octoploid triticale to hexaploid wheat followed by self-fertilization. The comparative analysis of IRAP and REMAP banding profiles, involving a complete set of wheat–rye addition lines, and their parental species revealed in those lines the presence of wheat-origin bands absent in triticale, and the absence of rye-origin and triticale-specific bands. The presence in triticale × wheat backcrosses (BC) of rye-origin bands that were absent in the addition lines demonstrated that genomic rearrangement events were not a direct consequence of backcrossing, but resulted from further genome structural rearrangements in the BC plant progeny. PCR experiments using primers designed from different rye-origin sequences showed that the absence of a rye-origin band in wheat–rye addition lines results from sequence elimination rather than restrict changes on primer annealing sites, as noted in triticale. The level of genome restructuring events evaluated in all seven wheat–rye addition lines, compared to triticale, indicated that the unbalanced genome merger situation observed in the addition lines induced a new round of genome rearrangement, suggesting that the lesser the amount of rye chromatin introgressed into wheat the larger the outcome of genome reshuffling.  相似文献   

11.
Spartina x townsendii arose during the end of the 19th century in England by hybridization between the indigenous Spartina maritima and the introduced Spartina alterniflora, native to the eastern seaboard of North America. Duplication of the hybrid genome gave rise to Spartina anglica, a vigorous allopolyploid involved in natural and artificial invasions on several continents. This system allows investigation of the early evolutionary changes that accompany stabilization of new allopolyploid species. Because allopolyploidy may be a genomic shock, eliciting retroelement insertional activity, we examined whether retrotransposons present in the parental species have been activated in the genome of S. anglica. For this purpose we used inter-retrotransposon amplified polymorphism (IRAP) and retrotransposons-microsatellite amplified polymorphism (REMAP) markers, which are multilocus PCR-based methods detecting retrotransposon integration events in the genome. IRAP and REMAP allowed the screening of insertional polymorphisms in populations of S. anglica. The populations are composed mainly of one major multilocus genotype, identical to the first-generation hybrid S. x townsendii. Few new integration sites were encountered in the young allopolyploid genome. We also found strict additivity of the parental subgenomes in the allopolyploid. Both these findings indicate that the genome of S. anglica has not undergone extensive changes since its formation. This contrasts with previous results from the literature, which report rapid structural changes in experimentally resynthesized allopolyploids.  相似文献   

12.
Cowpea [Vigna unguiculata L. (Walp)] is grown mainly for its protein-rich grains and is consumed in various forms in sub-Saharan Africa. Average grain yield in farmers’ fields is generally low due to a number of biotic and abiotic stresses. One hundred and six cowpea accessions from Ghana, which had previously been evaluated for seedling drought tolerance, were used for this study. This paper attempts to use three multi-locus PCR-based molecular markers; simple sequence repeats (SSR), inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphisms (REMAP), to analyse genetic diversity in the cowpea accessions. Analysis of the polymorphic bands data indicated that 101 alleles were amplified among 121 cowpea genotypes (83.4%) from 16 SSR primer pairs out of a total of 30 SSR primer pairs. Likewisely, a total of 66 (54.5%) polymorphic bands were obtained from IRAP and a total of 114 (94.2%) highly polymorphic bands obtained from REMAP analysis. The outcome indicated the highly polymorphic nature of the DNA markers, as small groups of these molecular markers were found to be able to identify each of the accessions used. Microsatellite markers (SSRs) and retrotransposon-based markers, like IRAP and REMAP, were found to be highly polymorphic and informative, suggesting that genomic fingerprinting has a major role in characterizing populations.  相似文献   

13.
IRAP and REMAP for retrotransposon-based genotyping and fingerprinting   总被引:1,自引:0,他引:1  
Retrotransposons can be used as markers because their integration creates new joints between genomic DNA and their conserved ends. To detect polymorphisms for retrotransposon insertion, marker systems generally rely on PCR amplification between these ends and some component of flanking genomic DNA. We have developed two methods, retrotransposon-microsatellite amplified polymorphism (REMAP) analysis and inter-retrotransposon amplified polymorphism (IRAP) analysis, that require neither restriction enzyme digestion nor ligation to generate the marker bands. The IRAP products are generated from two nearby retrotransposons using outward-facing primers. In REMAP, amplification between retrotransposons proximal to simple sequence repeats (microsatellites) produces the marker bands. Here, we describe protocols for the IRAP and REMAP techniques, including methods for PCR amplification with a single primer or with two primers and for agarose gel electrophoresis of the product using optimal electrophoresis buffers and conditions. This protocol can be completed in 1-2 d.  相似文献   

14.
Four molecular markers, including inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplified polymorphism (SSAP), and amplified fragment length polymorphism (AFLP), were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 28 genotypes in the genus Diospyros. The results were as follows: (1) the highest level of detected polymorphism were observed for IRAP; (2) AFLP was the most efficient marker system due to the simultaneous detection of abundant polymorphism markers per single reaction; (3) the marker index (MI) value was lower for SSAP than for AFLP, but SSAP had a higher level of detected polymorphism than AFLP; (4) the correlation coefficients of similarity were statistically significant for all four marker systems; (5) the four molecular markers yielded similar phylogenetic trees. To our knowledge, this was the first detailed report of a comparison of performance among three retrotransposon-based molecular markers (IRAP, REMAP, SSAP) and the AFLP technique (DNA-based molecular marker) on a set of samples of Diospyros. The results provide guidance for future efficient use of these molecular methods in the genetic analysis of Diospyros.  相似文献   

15.
 Alfalfa (Medicago sativa L.) is a forage legume of world-wide importance whose both allogamous and autotetraploid nature maximizes the genetic diversity within natural and cultivated populations. This genetic diversity makes difficult the discrimination between two related populations. We analyzed this genetic diversity by screening DNA from individual plants of eight cultivated and natural populations of M. sativa and M.  falcata using the RAPD method. A high level of genetic variation was found within and between populations. Using five primers, 64 intense bands were scored as present or absent across all populations. Most of the loci were revealed to be highly polymorphic whereas very few population-specific polymorphisms were identified. From these observations, we adopted a method based on the Roger’s genetic distance between populations using the observed frequency of bands to discriminate populations pairwise. Except for one case, the between-population distances were all significantly different from zero. We have also determined the minimal number of bands and individuals required to test for the significance of between-population distances. Received: 7 July 1997 / Accepted: 28 October 1997  相似文献   

16.
IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques   总被引:47,自引:2,他引:45  
 The BARE-1 retrotransposon is an active, dispersed, and highly abundant component of the genome of barley (Hordeum vulgare) and other species in its genus. Like all retrotransposons of its kind, BARE-1 is bounded by long terminal repeats (LTRs). We have developed two amplification-based marker methods based on the position of given LTRs within the genome. The IRAP (Inter-Retrotransposon Amplified Polymorphism) markers are generated by the proximity of two LTRs using outward-facing primers annealing to LTR target sequences. In REMAP (REtrotransposon-Microsatellite Amplified Polymorphism), amplification between LTRs proximal to simple sequence repeats such as constitute microsatellites produces markers. The methods can distinguish between barley varieties and produce fingerprint patterns for species across the genus. The patterns indicate that although the BARE-1 family of retrotransposons is disperse, these elements are locally clustered or nested and often found near tandem arrays of a simple sequence repeat. Received: 30 June 1998 / Accepted: 21 August 1998  相似文献   

17.
Womack JS  Randall J  Kemp JD 《Planta》2000,210(5):844-847
 A previously unidentified extension of an open reading frame from the genomic DNA of Japonica rice (Oryza sativa L.) encoding oryzacystatin-I (OC-I; access. M29259, protein ID AAA33912.1) has been identified as a 5′ gene segment coding for the OC-I signal peptide. The signal peptide appears to direct a pre-protein (SPOC-I; Accession No. AF164378) to the endoplasmic reticulum, where it is processed into the mature form of OC-I. The start codon of SPOC-I begins 114 bp upstream from that previously published for OC-I. A putative proteolytic site, which may yield a mature OC-I approximately 12 residues larger than previously described, has been identified within SPOC-I between Ala-26 and Glu-27. The signal peptide sequence was amplified by polymerase chain reaction using genomic DNA from O. sativa seedlings and ligated to the 5′ end of the truncated OC-I gene at the endogenous SalI site. Partially purified protein extracts from Escherichia coli expressing SPOC-I reacted with polyclonal antibodies raised against OC-I and revealed a protein of the expected molecular weight (15,355 Da). In-vitro translation of SPOC-I in the presence of microsomal membranes yielded a processed product approximately 2.7 kDa smaller than the pre-protein. Nicotiana tabacum L. cv. Xanthi plants independently transformed with the SPOC-I gene processed SPOC-I and accumulated the mature form of OC-I (approximately 12.6 kDa), which co-migrated with natural, mature OC-I extracted from rice seed when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Received: 29 July 1999 / Accepted: 25 August 1999  相似文献   

18.
The retrotransposon-based marker system, inter-retrotransposon amplified polymorphism (IRAP), and inter-simple sequence repeats (ISSRs) were used to detect somaclonal variation induced by tissue culture. IRAPs use a single primer designed to amplify out from the 5′ LTR sequence of the BARE-1 retrotransposon combined with a degenerate 3′ anchor, similar to that of ISSR primers. We analysed DNA polymorphisms in 147 primary regenerants and parental controls from three cultivars of barley (Hordeum vulgare). The ISSR marker system generated an average of 218 bands per primer, with 29 polymorphisms of which 12 were novel non-parental bands. In comparison, the IRAP system generated an average of 121 bands per primer, with 15 polymorphisms of which nine were novel non-parental bands. Polymorphism detected for IRAP and ISSR markers was more than twofold higher in Golden Promise than Mackay and Tallon cultivars. However, there was no significant difference in the frequency of novel non-parental bands. Cluster analysis revealed that the level of polymorphism and genetic variability detected was comparable between IRAP and ISSR markers. This suggests that retrotransposon-based marker systems, such as IRAP, based on retrotransposons such as BARE-1, are valuable tools for the detailed characterisation of mutation profiles that arise during tissue culture. Their use should improve our understanding of processes influencing mutation and somaclonal variation and allow for the design of methods that yield fewer genome changes in applications where maintaining clonal integrity is important.  相似文献   

19.
Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon’s information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F ST ) among the populations. The Mantel test showed that two types of matrices of D and F ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.  相似文献   

20.
Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon’s information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei’s unbiased genetic distance (D) and fixation index (F ST ) between the populations. The Mantel test showed that two types of matrices of D and F ST were highly correlated, whether from RAPD or ISSR data, r = 0.9310 (P  = 0.008) and 0.9313 (P = 0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号