首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Random-amplified polymorphic DNA markers have been used to assess the amount and the distribution of the genetic diversity of Schistosoma mansoni within a natural population of Biomphalaria glabrata at a transmission site of the murine schistosomiasis focus of Guadeloupe. Despite high infection rate and heavy schistosome load within the definitive hosts (Ratus rattus), prevalences within intermediate snails ranged from 0.2 to 4.8%. Whatever the transmission season may be (rainy vs. dry), most of the infected snails were spatially aggregated and 88.4% of them harbored a single parasite genotype indicative of a monomiracidial infection; 4.7% had dual sex infections and a parasite intensity not exceeding 3 miracidia per snail. A substantial resistance level toward the parasite and recruitment regulatory process within snails may explain in part the observed low parasite prevalences and intensities. Considering such a distribution pattern of larval S. mansoni genetic diversity among B. glabrata, mobility of the definitive hosts, or rapid turnover of infected snails, or both, are required to maintain genetic heterogeneity within adult schistosome populations.  相似文献   

2.
Characterizing host and parasite population genetic structure and estimating gene flow among populations is essential for understanding coevolutionary interactions between hosts and parasites. We examined the population genetic structure of the trematode Schistosoma mansoni and its two host species (the definitive host Rattus rattus and the intermediate host Biomphalaria glabrata) using microsatellite markers. Parasites were sampled from rats. The study was conducted in five sites of the Guadeloupe Island, Lesser Antilles. Mollusks display a pattern of isolation by distance whereas such a pattern is not found neither in schistosomes nor in rats. The comparison of the distribution of genetic variability in S. mansoni and its two host species strongly suggests that migration of parasites is principally determined by that of the vertebrate host in the marshy focus of Guadeloupe. However, the comparison between genetic differentiation values in schistosomes and rats suggests that the efficacy of the schistosome rat-mediated dispersal between transmission sites is lower than expected given the prevalence, parasitic load and migration rate of rats among sites. This could notably suggest that rat migration rate could be negatively correlated to the age or the infection status of individuals. Models made about the evolution of local adaptation in function of the dispersal rates of hosts and parasites suggest that rats and mollusks should be locally adapted to their parasites.  相似文献   

3.
Many pathogens of medical and veterinary importance have obligatory multihost life cycles. Yet, theoretical models aiming to predict patterns of pathogen reproductive success and the limited empirical data available with which to evaluate them, focus on directly transmitted microparasites. Patterns of host exploitation and the relative fitness of individual pathogen genotypes throughout the different host stages of multihost life cycles have thus remained ignored. We examined correlated responses to artificial selection of Schistosoma mansoni lines selected for high or low infection intensity in the intermediate host. Pathogen fitness in the intermediate host was strongly inversely correlated with pathogen fitness in the definitive host. Moreover, high pathogen infection intensity was associated with decreased, rather than increased, virulence to its intermediate host. These results raise important implications regarding the impact of genetic constraints on the maintenance of genetic and phenotypic polymorphisms in natural populations, the evolution and coevolution of parasite virulence and host specialization, as well as the success of host-directed control programs.  相似文献   

4.
Using controlled experiments, the ability of the trematode parasite Stegodexamene anguillae, encysted within its intermediate fish host, the common bully Gobiomorphus cotidianus, was tested to indirectly detect the presence of its definitive host by exposing infected G. cotidianus to chemical cues from the definitive host, the short-finned eel Anguilla australis. The trematode can abbreviate its normal life cycle and achieve precocious maturity in G. cotidianus, or adopt the usual strategy consisting in delaying maturity until it reaches an A. australis. The results suggest that chemical cues from the definitive A. australis host do not affect the frequency of life cycle abbreviation in S. anguillae. Other life-history traits, such as parasite body size or the egg output of early-maturing parasites, were also unaffected by chemical cues from A. australis or from an alternative predator of G. cotidianus, the perch Perca fluviatilis, that is not a suitable host for the trematode. Therefore, factors other than A. australis host presence or abundance may be the important selective forces for life cycle abbreviation in this fish parasite.  相似文献   

5.
Estimating parasite fitness is central to studies aiming to understand parasite evolution. Theoretical models generally use the basic reproductive rate R(0) to express fitness, yet it is very difficult to quantify R(0) empirically and experimental studies often use fitness components such as infection intensity or infectivity as substitutes. These surrogate measures may be biased in several ways. We assessed local adaptation of the microsporidium Ordospora colligata to its host, the crustacean Daphnia magna using two different parasite fitness components: infection persistence over several host generations in experimental populations and infection intensity in individual hosts. We argue that infection persistence is a close estimator of R(0), whereas infection intensity measures only a component of it. Both measures show a pattern that is consistent with parasite local adaptation and they correlate positively. However, several inconsistencies between them suggest that infection intensity may at times provide an inadequate estimate of parasite fitness.  相似文献   

6.
To elucidate changes relative to compatibility with intermediate and definitive hosts affecting Schistosoma mansoni since it was introduced to the New World, the compatibility of S. mansoni from Africa (the Cameroons), from the Caribbean (Guadeloupe), and those resulting from experimental crosses with the gastropods Biomphalaria glabrata and B. pfeifferi has been studied. Results show that S. mansoni, regardless of its origin or its usual snail host, always infects B. pfeifferi more successfully than B. glabrata. The success rate with B. pfeifferi is 100% with 5 miracidia of S. mansoni from Guadeloupe and 97% with 5 miracidia from the Cameroons. On the other hand, in B. glabrata infection rate was 54% with 5 miracidia from Guadeloupe and 0% with 5 miracidia from the Cameroons (a rate of 19% is reached when using 10 miracidia). Hybrid miracidia infect B. pfeifferi and B. glabrata with a success rate of 60 and 86%, respectively, which are intermediate between those of the parent strains. Studies of S. mansoni development in Rattus rattus show that there is better infectivity and survival for the Caribbean strain than the Cameroon strain: the percentage worm recovery 4 weeks after exposure in 34% for S. mansoni from Guadeloupe, 14% for S. mansoni from the Cameroons, and 31% for the hybrids. The mortality rate between 4 and 12 weeks after exposure is 51% for S. mansoni from Guadeloupe, 87% for S. mansoni from the Cameroons, and 31% for the hybrids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Host biodiversity can impact disease risk and influence the transmission of parasitic disease. Stream sediment-dwelling worms, Tubifex tubifex (Clitellata: Oligochaeta), are the definitive host of the parasite Myxobolus cerebralis (Myxozoa: Myxosporea), which causes whirling disease in salmonid fishes. Genetic diversity of T. tubifex is correlated with host susceptibility to M. cerebralis , and mitochondrial Lineage III is generally shown to be more likely to be infected and produce the triactinomyxon (TAM) spores than other lineages. We determined the mitochondrial lineage, relative abundance, and prevalence of infection of T. tubifex collected at 3 sites in the Madison River, Montana, where previous study had shown variation in whirling disease prevalence and severity in caged trout fry. We also compared visual identification of TAMs released from cultured worms with a molecular genetic assay (diagnostic polymerase chain reaction [PCR]) for parasite detection of both infected and uninfected worms. We estimated that mitochondrial Lineage III was most abundant at the site previously shown to have high fish disease and was also most likely to be infected. The 2 techniques for detecting parasite infection did not always agree, and the likelihood of PCR (+) and spore (-) was not significantly different from PCR (-) and spore (+). Differences in the relative infection prevalence for these 2 lineages may explain the wide range of infection in natural streams.  相似文献   

8.
A comparative analysis of the cercarial shedding of 2 Schistosoma mansoni populations originating from the same endemic area (Guadeloupe) allows us to distinguish an early (peak emergence at 1100 hr) and a late (peak at 1600 hr) shedding patterns of cercariae. This intraspecific variation in the chronobiology of S. mansoni cercariae may be related to the ecology in the transmission site. The early shedding pattern characterizes schistosome populations originated from urbanized foci where man plays the main role in the parasite transmission; the late shedding pattern characterizes schistosome populations originated from sylvatic focus where a rat (R. rattus) is the main host. The late shedding of cercariae is considered as an adaptation favoring transmission to a murine host whose behavior is preferentially crepuscular.  相似文献   

9.
Modulation of host responses is an important strategy by which parasites ensure successful establishment and persistence. Host counteraction against this modulation may be required for the host to develop resistance to infection. In this pilot study, experimental infection of dogs with Echinococcus granulosus induced a strong polarization of the cytokine response towards a Th2 phenotype. Consecutive rounds of infection and cure induced resistance to infection resulting in a dramatically lower parasite burden. Repeatedly-infected resistant dogs also lost immune polarization and developed a balanced Th1/Th2 response. No major differences were observed in the production of regulatory cytokines (IL-10, TGF-β) between dogs with high parasite load and dogs with only few intestinal parasites. These results suggest that E. granulosus-driven immunomodulation contributes to successful infection in the definitive host. This information might be relevant for the development of more effective vaccines against this stage of the parasite.  相似文献   

10.
Marked heterogeneity exists in the patterns of parasitic infection between individuals, households and communities. Analysis of parasite distributions within populations is complicated by the fact that parasite distributions are highly aggregated and few studies have explicitly incorporated this distribution when investigating small-scale spatial heterogeneities. This study aimed to quantify the small-scale (within- and between-household) heterogeneity of helminth infection in an area of Minas Gerais State, Brazil, with rural and urban sectors. Parasitological data from a cross-sectional survey of 1,249 individuals aged 0-86 years from 242 households were analysed. Within-household clustering of infection was assessed using random effect logistic regression models and between-household spatial heterogeneity was assessed using a Bayesian negative binomial spatial model. The overall prevalence of hookworm (Necator americanus) was 66.9%, the prevalence of Schistosoma mansoni was 44.9% and the prevalence of Ascaris lumbricoides was 48.8%. Statistical analysis indicated significant (within) household and (between household) spatial clustering of hookworm in both rural and urban areas and of S. mansoni in rural areas. There was no evidence of either household or spatial clustering of S. mansoni in urban areas. The spatial correlation of S. mansoni was estimated to reduce by half over a distance of 700 m in the rural area. Rural hookworm had a much smaller half-distance (28 m) and urban hookworm showed an even smaller half-distance (12 m). We suggest that such species-specific differences in patterns of infection by environment are primarily due to variation in exposure and parasite life cycle, although host genetic factors cannot be ruled out.  相似文献   

11.
We studied the population genetic structure of 360 and 1247 adult Schistosoma mansoni using seven microsatellite and seven random amplified polymorphic DNA (RAPD) markers, respectively. Parasites were collected from their natural definitive host Rattus rattus in Guadeloupe (West Indies). We found a sex-specific genetic structure, a pattern never before reported in a parasitic organism. Male genotypes were more randomly distributed among rats than female genotypes. This interpretation was consistent with a lower differentiation between hosts for males relative to females, the higher genetic similarity between females in the same host and the observed local (i.e. within-individual-host) differences in allele frequencies between the two sexes. We discuss our results using ecological and immunological perspectives on host-parasite relationships. These results change our view on the epidemiology of schistosomiasis, a serious disease affecting humans in African and American intertropical zones.  相似文献   

12.
Nancy F. Smith 《Oecologia》2001,127(1):115-122
Spatial variation in parasitism is commonly observed in intermediate host populations. However, the factors that determine the causes of this variation remain unclear. Increasing evidence has suggested that spatial heterogeneity in parasitism among intermediate hosts may result from variation in recruitment processes initiated by definitive hosts. I studied the perching and habitat use patterns of wading birds, the definitive hosts in this system, and its consequences for the recruitment of parasites in snail intermediate hosts. Populations of the mangrove snail, Cerithidea scalariformis, collected from mangrove swamps on the east coast of central Florida are parasitized by a diverse community of trematode parasites. These parasites are transmitted from wading birds, which frequently perch on dead mangrove trees. I tested the hypothesis that mangrove perches act as transmission foci for trematode infections of C. scalariformis and that the spatial variation of parasitism frequently observed in this system is likely to emanate from the distribution of wading birds. On this fine spatial scale, definitive host behaviors, responding to a habitat variable, influenced the distribution, abundance and species composition of parasite recruitment to snails. This causal chain of events is supported by regressions between perch density, bird abundance, bird dropping density and ultimately parasite prevalence in snails. Variation between prevalence of parasites in free-ranging snails versus caged snails shows that while avian definitive hosts initiate spatial patterns of parasitism in snails through their perching behaviors, these patterns may be modified by the movement of snail hosts. Snail movement could disperse their associated parasite populations within the marsh, which may potentially homogenize or further increase parasite patchiness initiated by definitive hosts.  相似文献   

13.
Most ecological and epidemiological models describe systems with continuous uninterrupted interactions between populations. Many systems, though, have ecological disturbances, such as those associated with planting and harvesting of a seasonal crop. In this paper, we introduce host–parasite–hyperparasite systems as models of biological control in a disturbed environment, where the host–parasite interactions are discontinuous. One model is a parasite–hyperparasite system designed to capture the essence of biological control and the other is a host–parasite–hyperparasite system that incorporates many more features of the population dynamics. Two types of discontinuity are included in the models. One corresponds to a pulse of new parasites at harvest and the other reflects the discontinuous presence of the host due to planting and harvesting. Such discontinuities are characteristic of many ecosystems involving parasitism or other interactions with an annual host. The models are tested against data from an experiment investigating the persistent biological control of the fungal plant parasite of lettuce Sclerotinia minor by the fungal hyperparasite Sporidesmium sclerotivorum, over successive crops. Using a combination of mathematical analysis, model fitting and parameter estimation, the factors that contribute the observed persistence of the parasite are examined. Analytical results show that repeated planting and harvesting of the host allows the parasite to persist by maintaining a quantity of host tissue in the system on which the parasite can reproduce. When the host dynamics are not included explicitly in the model, we demonstrate that homogeneous mixing fails to predict the persistence of the parasite population, while incorporating spatial heterogeneity by allowing for heterogeneous mixing prevents fade-out. Including the host''s dynamics lessens the effect of heterogeneous mixing on persistence, though the predicted values for the parasite population are closer to the observed values. An alternative hypothesis for persistence involving a stepped change in rates of infection is also tested and model fitting is used to show that changes in some environmental conditions may contribute to parasite persistence. The importance of disturbances and periodic forcing in models for interacting populations is discussed.  相似文献   

14.
Helminth parasites have the potential to significantly affect the dynamics of their hosts. As a consequence, they can dramatically threaten the persistence of endangered species, such as rock partridge Alectoris graeca saxatilis, found in the Province of Trento (northern Italy). The aim of this work was to understand the effect of helminth parasites on rock partridge fitness, and the subsequent potential effects on host population dynamics. In particular, we investigated the hypothesis that infections from Ascaridia compar induce rock partridge population cycles observed in Trentino. In order to support this hypothesis, we compared the predictions obtained from a host–parasite interaction model including variable parasite aggregation with multi‐annual empirical data of A. compar infection in natural host populations. We estimated host demographic parameters using rock partridge census data from Trentino, and the parasitological parameters from a series of experimental infections in a captive rock partridge population. The host–parasite model predicted higher A. compar abundance in rock partridge populations exhibiting cyclic dynamics compared to non‐cyclic ones. In addition, for cyclic host populations, the model predicted an increase in mean parasite burden with the length of cycle period. Model predictions were well‐supported by field data: significant differences in parasite infection between cyclic and non‐cyclic populations and among cyclic populations with different oscillation periods were observed. On the basis of these results, we conclude that helminth parasites can not be ruled out as drivers of rock partridge population dynamics in Trentino and must be considered when planning conservation strategies of this threatened species.  相似文献   

15.
The protozoan parasite Toxoplasma gondii is prevalent worldwide and can infect a remarkably wide range of hosts despite felids being the only definitive host. As cats play a major role in transmission to secondary mammalian hosts, the interaction between cats and these hosts should be a major factor determining final prevalence in the secondary host. This study investigates the prevalence of T. gondii in a natural population of Apodemus sylvaticus collected from an area with low cat density (<2·5 cats/km2). A surprisingly high prevalence of 40·78% (95% CI: 34·07%-47·79%) was observed despite this. A comparable level of prevalence was observed in a previously published study using the same approaches where a prevalence of 59% (95% CI: 50·13%-67·87%) was observed in a natural population of Mus domesticus from an area with high cat density (>500 cats/km2). Detection of infected foetuses from pregnant dams in both populations suggests that congenital transmission may enable persistence of infection in the absence of cats. The prevalences of the related parasite, Neospora caninum were found to be low in both populations (A. sylvaticus: 3·39% (95% CI: 0·12%-6·66%); M. domesticus: 3·08% (95% CI: 0·11%-6·05%)). These results suggest that cat density may have a lower than expected effect on final prevalence in these ecosystems.  相似文献   

16.
Parasites with indirect life cycles require trophic transmission from intermediate hosts to definitive (vertebrate) hosts. Transmission may be facilitated if parasite infection alters the behavior of intermediate hosts such that they are more vulnerable to predation. Vulnerability to predation may also be influenced by abiotic factors; however, rarely are the effects of parasites and abiotic factors examined simultaneously. The swash zone of sandy beaches is a particularly harsh environment. Sand crabs (Emerita analoga) burrow rapidly in the swash zone to avoid predators and dislodgment. We examined prevalence and abundance of the acanthocephalan parasite Profilicollis altmani in sand crabs, and investigated the synergistic effects of sand grain size (an important abiotic factor), parasite infection, body size and reproductive condition on burrowing speed in females, from three California sites. More heavily parasitized crabs burrowed more slowly, making them potentially more vulnerable to predation by marine bird definitive hosts. Ovigerous females harbored more parasites than non-ovigerous females, but burrowed more quickly. All crabs burrowed slowest in the coarsest sand, and burrowing times increased with repeated testing, suggesting that it is energetically costly. Abiotic and biotic factors influence burrowing, and behavioral variation across sites may reflect the response to natural variation in these factors.  相似文献   

17.
Doi H  Yurlova NI 《Parasitology》2011,138(8):1022-1028
It is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982-1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism.  相似文献   

18.
The enemy release hypothesis is often used to explain the success of non‐native species invasions. Growing evidence indicates that parasite or pathogen species richness increases over time in invasive non‐native species; however, this increase should not directly translate into release from enemy pressure as infection intensity of parasites (number of parasites per host) has a more profound impact on host fitness. The changes in intensity of parasitic infections in invasive non‐native species have not yet been thoroughly analysed in newly colonized areas. The goal of this study was to determine whether gastrointestinal parasite (nematode and trematode) infection intensity has increased with time since the populations of American mink Neovison vison were established and how host demographic parameters affect infection intensity. We tested the enemy release hypothesis by substituting space for time, evaluating parasite abundance in American mink at six sites along a chronosequence of mink invasion history. Nematode and trematode abundance increased with time since mink introduction, from a few parasites on average per mink after 16 yr, to 200–250 parasites per mink after 34 yr. The rate of increase in parasite abundance varied among demographic groups of mink (sex and age). Both nematodes and trematodes were more abundant in males than in females, and in subadults than in adults. Higher nematode abundance negatively affected body condition of mink. Our results provide evidence that non‐native species are released from enemy pressure only in the first phase of invasion, and that infection is modulated by host demographics and season. These results contribute to the evaluation of the long‐term patterns of parasite accumulation in invasive non‐native species after their colonization of new territories.  相似文献   

19.
Infection by parasites with complex life cycles such as trematodes depends on many environmental factors which may result in a time-lag between host biomass fluctuations and parasite density in hosts. A cockle (marine bivalve, second intermediate host) population and its associated parasite community were monitored over 15 years. A time-shift correlation analysis suggests that trematode abundance in cockles responds to cockle biomass after a long delay (8 year time-lag). Thus, these parasites can sustainably support a deficit of their intermediate host.  相似文献   

20.
Parasite manipulation of host behaviour is a compelling example of the extended phenotype. However, in many cases, such manipulation may be incorrectly assumed. Previous work has demonstrated that Austrovenus stuchburyi cockles stranded on mud-flat surfaces due to an inability to re-burrow both contain significantly more metacercariae of the trematode Curtuteria australis and are predated by the definitive host of this parasite at a faster rate than burrowed cockles. These results have been interpreted as strong evidence for a manipulation of cockle behaviour by the trematode to facilitate transmission to the definitive host. The model presented here, however, indicates that the selective advantage to the parasite of the altered host behaviour is currently of a negligible level at our study site that is highly unlikely to have been realized as an adaptation over evolutionary time. Hence, there are no grounds on which the more parsimonious explanation, that the altered host behaviour observed is simply an incidental side-effect of infection, can be rejected. We thus maintain that for any change in the behaviour of infected hosts to be confirmed as potentially a parasite trait that has evolved in response to selection, the adaptive benefit taking into account the entire parasite life cycle may need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号