首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate factors related to the distribution of intertidal species, and specific predictions of the swash exclusion hypothesis for exposed sandy beaches, we compared the burrowing abilities and swash behavior of three species of anomuran crabs in the superfamily Hippoidea (Emerita analoga, Blepharipoda occidentalis and Lepidopa californica) which commonly inhabit the intertidal and shallow subtidal zones of beaches along the California coast. Burrowing times in the laboratory increased significantly with crab size for all species in five sediment grain sizes ranging from fine sand to gravel (0.15 to 3.24 mm). For each species, burrowing times differed significantly among sand grain sizes, ranging from 0.3 to 21.5 s. Burrowing times for the hippid crab, E. analoga, were relatively constant across sediment types, while those of the albuneid crabs, B. occidentalis and L. californica, were rapid in fine to medium sands, and much slower in coarser sediments. Our results indicate that E. analoga is a substrate generalist while L. californica and B. occidentalis are substrate sensitive. Pre-burrowing times and behavior, distance moved, and burrowing times differed among the species in the swash zone. Combined times of preburrowing and burrowing were shorter than the swash period (6 s) for most E. analoga individuals. Fifty percent of the individuals of L. californica reached the substrate and burrowed in the swash period, while no individuals of B. occidentalis burrowed in that time. Pre-burrowing behavior and time may be valuable in explaining spatial and temporal patterns in the distribution of hippoid crabs on California beaches. Our results support predictions of the swash exclusion hypothesis concerning the burrowing and locomotory abilities of sandy beach macrofauna. The substrate generalist characteristics, and unique orientation and swimming abilities of the hippid crab, E. analoga, in intertidal swash may help explain the success of this species and its congeners, and have important implications for understanding patterns of macrofauna community structure on exposed sandy beaches in California and other regions.  相似文献   

2.
I investigated spatial variation in the prevalence and abundance of 4 species of parasites in the sand crab, Emerita analoga, on 8 sandy beaches along 800 km of the California coast, to assess the importance of bird abundance for the distribution of parasites among sand crab populations. I collected sand crabs and counted shorebirds and gulls at each beach during June and November 1994. Sand crabs served as intermediate hosts for 4 species of parasites, including a trematode, Spelotrema nicolli (Cable and Hunnienen, 1938); an acanthocephalan, Polymorphus kenti (Van Cleave, 1947); a nematode, Proleptus sp., and an unidentified trypanorhynch tapeworm. Among sand crab populations, there was substantial spatial variation in the prevalence and abundance of each parasite species. No latitudinal pattern was apparent for any of the 4 species observed. Temporally, parasite prevalence and abundance was significantly different between dates for all 4 parasites. Specifically, sand crab populations experienced higher trematode, nematode, and trypanorhynch prevalence and abundance in November than in June. In contrast, prevalence and abundance of acanthocephalans were higher in June than in November. There were strong positive associations between bird abundance and prevalence of parasitic infection for trematodes and acanthocephalans for some dates but not for nematodes or trypanorhynchs, which use elasmobranchs as definitive hosts. The spatial variation in prevalence and abundance of trematodes and acanthocephalans observed among sand crab populations may be attributed to the distribution and abundance of shorebirds and gulls that serve as definitive hosts.  相似文献   

3.
《Animal behaviour》2002,63(2):269-275
Talitrid amphipods spend their days burrowed in sand to avoid predators as well as desiccation and heat stress, although other factors may influence burrowing depth. We investigated the potential role of mermithid nematode parasites in determining burrowing depth in the amphipod Talorchestia quoyana. Mermithids grow as parasites inside amphipods until they reach adulthood, when they must emerge from their host into moist sand to complete their life cycle and reproduce. When allowed to burrow to a depth of their choice in experimental situations, large amphipods burrowed deeper than small ones. In addition, deep-burrowing amphipods were more likely to be infected by mermithid nematodes, and harboured longer worms, on average, than amphipods that burrowed close to the sand surface. This last result is not an artefact of the larger size of deep-burrowing amphipods: the increase in worm length with increasing depth was found after statistical correction for host size. In other words, amphipods that burrowed deeper harboured longer worms than expected based on their body size, whereas those that stayed near the surface of the sand column harboured worms shorter than one would expect based on host size. This implies that the greater burrowing depth of infected amphipods is a consequence, and not a cause, of infection. These results emphasize the importance of parasitism as a determinant of the small-scale spatial distribution of their hosts.  相似文献   

4.
The infection effects of the parasitic digenean trematode on the body weight and reproductive success of the sand-bubbler crab were examined. Gynaecotyla squatarolae (Trematoda: Microphallidae) infects the body cavity of Scopimera globosa (Decapoda: Scopimeridae) and uses the crab as its second intermediate host. The parasites infected all reproductive crabs examined to varying degrees. Larger crabs of both sexes had more parasites than smaller ones, probably because body size reflects age, and older crabs had a longer period of exposure to infection. Males had more parasites than females, probably because of sexual difference in acting time on the surface. Ovigerous females stay in closed burrows and do not act on the surface during incubation, and so have less chance of infection than males. The quantity of infecting parasites did not explain variations in either body weight or reproductive success of individual crabs in a field experiment. The life history of this parasite, relative body size of the crabs, and cost and the possible benefit of manipulation for the parasite may explain these results.  相似文献   

5.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

6.
We have investigated the influence of Microphallus papillorobustus (Trematoda) on the reproductive biology and mating patterns of its intermediate host Gammarus insensibilis (Amphipoda). Infected Gammarus species show altered behaviour which renders them more susceptible to predation by Charadriiform birds, the parasite's definitive hosts. In a natural population of G. insensibilis, mean parasite intensity was higher for unpaired individuals than for paired individuals. Fecundity was reduced in infected amphipods. Size-assortative pairing was significant, although infected males were found with smaller females compared to uninfected males of the same size. There was also a positive assortative pairing by parasitic prevalence. Vertical segregation between infected and uninfected individuals, male-male competition for access to uninfected females, and female choice may explain assortative mating for prevalence. This study provides the first empirical evidence that parasites can have a direct effect on patterns of mating in gammarids.  相似文献   

7.
Joly DO  Messier F 《Oecologia》2004,140(4):586-590
The role of parasites in influencing the trophic dynamics of hosts is becoming increasingly recognized in the ecological literature. Echinococcus granulosus is a tapeworm that relies on the predator-prey relationship between the definitive host (wolf, Canis lupus) and the intermediate host, (moose, Alces alces) to complete its life cycle. Heavy infection by E. granulosus may predispose moose to increased risk of predation by wolves. Theory predicts that parasite-induced vulnerability to predation will reduce the degree of aggregation of parasites in a host population. We tested for different levels of aggregation of E. granulosus in moose in areas of low, moderate, and high levels of wolf predation using Greens coefficient of dispersion. Parasite aggregation was lower in an area with high predation rate, thus we hypothesize that heavy infection by E. granulosus predisposes moose to predation by wolves. This increase in predation rate due to parasite infection may influence the role of wolves in regulating moose populations. We discuss alternative explanations for the negative correlation between predation rate and parasite aggregation.An erratum to this article can be found at  相似文献   

8.
Poulin R  Leung TL 《Oecologia》2011,166(3):731-738
Within food webs, trophically transmitted helminth parasites use predator–prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species’ position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal’s role in predator–prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.  相似文献   

9.
Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate–definitive host systems, two strategies of host manipulation have been evolved: increasing the rate of transmission to the definitive host by increasing the chance that the definitive host will prey on the intermediate host, or increasing the lifespan of the parasite in the intermediate host by decreasing the predation chance when the intermediate host is not yet infectious. As the second strategy is less well studied than the first, it is unknown under what conditions each of these strategies is prevailed and evolved. We analysed the effect of both strategies on the presence of parasites in intermediate–definitive host systems with a structured population model. We show that the parasite can increase the parameter space where it can persist in the intermediate–definitive host system using one of these two strategies of host manipulation. We found that when the intermediate host or the definitive host has life‐history traits that allow the definitive host to reach large population densities, that is high reproduction rate of the intermediate host or high conversion efficiency of the definitive host (efficiency at which the uninfected definitive host converts caught intermediate hosts into offspring), respectively, evolving manipulation to decrease the predation chance of the intermediate host will be more beneficial than manipulation to increase the predation chance to enhance transmission. Furthermore, manipulation to decrease the predation chance of the intermediate host results in higher population densities of infected intermediate hosts than manipulation that increases the predation chance to enhance transmission. Our study shows that host manipulation in early stages of the parasite development to decrease predation might be a more frequently evolved way of host manipulation than is currently assumed.  相似文献   

10.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing the hosts to increased predation. This is generally considered a parasite strategy evolved to enhance transmission to the next hosts. However, the adaptive value of host manipulation is not clear as it may be associated with costs, such as increased susceptibility to predators that are unsuitable next hosts for the parasites. We examined the ratio between the benefits and costs of host manipulation for transmission success of Acanthocephalus lucii (Acanthocephala), a parasite that alters the hiding behaviour and pigmentation of its isopod hosts. We experimentally compared the susceptibility of infected and uninfected isopods to predation by perch (Perca fluvialis; definitive host of the parasite) and dragonfly larvae (dead end). We found that the parasite predisposed the isopods to predation by both predators. However, the increased predation vulnerability of the infected isopods was higher towards perch. This suggests that, despite the costs due to non-host predation, host manipulation may still be advantageous for the parasite.  相似文献   

11.
Helminth communities in definitive hosts are formed by the acquisition of packets of larvae arriving each time an intermediate host is consumed. It is thus possible that associations between parasite species or other aspects of community structure get transferred from intermediate to definitive hosts. Earlier computer simulations showed that associations between 2 parasite species, in particular positive associations, could be transferred up the food chain. Here, we alter some of the assumptions of previous models and generate new simulations of several ways in which source infracommunities in intermediate hosts can be transferred to target infracommunities in definitive hosts. In particular, we introduced nonrandom selection of intermediate hosts by predatory definitive hosts, to mimic the phenomenon of host manipulation by parasites; this consisted in biasing predation toward intermediate hosts harboring a certain parasite species. Overall, our results show that positive covariances between 2 parasite species can not only be transferred but can also be amplified during transmission to definitive hosts; significant covariance between parasite species can even appear in the definitive hosts when none existed in the intermediate hosts. Negative covariance was not as readily transferred to definitive hosts and amplified, in part because of properties of the presence-absence covariance index. Amplification of covariance results from intermediate host manipulation as well as from other processes taking place during transmission. These results suggest that the patterns of association between helminth species in definitive hosts cannot be taken to reflect the processes acting inside those hosts: they may simply be inherited, with amplification, from intermediate hosts.  相似文献   

12.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

13.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Medoc V  Beisel JN 《Parasitology》2008,135(8):977-984
Among the potential effects of parasitism on host condition, the 'increased host abilities' hypothesis is a counterintuitive pattern which might be predicted in complex-life-cycle parasites. In the case of trophic transmission, a parasite increasing its intermediate host's performance facing non-host predators improves its probability of transmission to an adequate, definitive host. In the present study, we investigated the cost of infection with the acanthocephalan Polymorphus minutus on the locomotor/escape performance of its intermediate host, the crustacean Gammarus roeseli. This parasite alters the behaviour of its intermediate host making it more vulnerable to predation by avian definitive hosts. We assessed the swimming speeds of gammarids using a stressful treatment and their escape abilities under predation pressure. Despite the encystment of P. minutus in the abdomen of its intermediate host, infected amphipods had significantly higher swimming speeds than uninfected ones (increases of up to 35%). Furthermore, when interacting with the non-host crustacean predator Dikerogammarus villosus, the highest escape speeds and greatest distances covered by invertebrates were observed for parasitized animals. The altered behaviour observed among the manipulated invertebrates supported the 'increased host abilities' hypothesis, which has until now remained untested experimentally. The tactic of increasing the ability of infected intermediate hosts to evade potential predation attempts by non-host species is discussed.  相似文献   

15.
Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single-species infections. Secondly, we used the crab, Macrophthalmus hirtipes (Ocypodidae), naturally infected by the trematodes, M. novaezealandensis and Levinseniella sp., the acanthocephalan, Profilicollis spp., and an acuariid nematode. These four helminths all develop and grow in their crustacean host before transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural infections, we found that M. novaezealandensis-metacercariae achieved a smaller volume, on average, when infrapopulations of this parasite were large. Small metacercariae produced small in vitro-adult worms, which in turn produced fewer eggs. Crowding effects in the intermediate host thus were expressed at the adult stage in spite of the worms being cultured in a nutrient-rich medium. Furthermore, excystment success and egg-production in M. novaezealandensis in naturally infected crabs were influenced by the number of co-occurring Profilicollis cystacanths, indicating interspecific interactions between the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness.  相似文献   

16.
Nancy F. Smith 《Oecologia》2001,127(1):115-122
Spatial variation in parasitism is commonly observed in intermediate host populations. However, the factors that determine the causes of this variation remain unclear. Increasing evidence has suggested that spatial heterogeneity in parasitism among intermediate hosts may result from variation in recruitment processes initiated by definitive hosts. I studied the perching and habitat use patterns of wading birds, the definitive hosts in this system, and its consequences for the recruitment of parasites in snail intermediate hosts. Populations of the mangrove snail, Cerithidea scalariformis, collected from mangrove swamps on the east coast of central Florida are parasitized by a diverse community of trematode parasites. These parasites are transmitted from wading birds, which frequently perch on dead mangrove trees. I tested the hypothesis that mangrove perches act as transmission foci for trematode infections of C. scalariformis and that the spatial variation of parasitism frequently observed in this system is likely to emanate from the distribution of wading birds. On this fine spatial scale, definitive host behaviors, responding to a habitat variable, influenced the distribution, abundance and species composition of parasite recruitment to snails. This causal chain of events is supported by regressions between perch density, bird abundance, bird dropping density and ultimately parasite prevalence in snails. Variation between prevalence of parasites in free-ranging snails versus caged snails shows that while avian definitive hosts initiate spatial patterns of parasitism in snails through their perching behaviors, these patterns may be modified by the movement of snail hosts. Snail movement could disperse their associated parasite populations within the marsh, which may potentially homogenize or further increase parasite patchiness initiated by definitive hosts.  相似文献   

17.
Phenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.  相似文献   

18.
Vertebrate hosts differ in their level of parasite susceptibility and infestation. In avian broods, variation in susceptibility of nestlings to ectoparasites may be associated with non‐uniform distributions of parasites among brood mates, with parasites concentrating feeding on the most vulnerable hosts. The presence of a highly susceptible nestling in a brood can benefit the remaining young by reducing the parasite pressure they experience; however, from a parasite’s perspective, broods with fewer susceptible hosts may provide effectively fewer resources than broods of the same size containing a greater abundance of susceptible hosts, and this could limit the number of parasites that a host brood can sustain. To test whether variation in number of susceptible hosts affects the number of parasites in bird nests, we first examined the role of host sex and induced immunity (via methionine supplementation) on susceptibility of mountain bluebirds Sialia currucoides to parasitism by blow flies Protocalliphora spp. We then assessed the effect of variation in number of susceptible hosts on the number of parasites inhabiting the nest. Only females showed a benefit of methionine supplementation, gaining mass more rapidly following supplementation compared to males. This suggests that females are more susceptible to parasites in this system; this was further supported by parasite feeding trials, in which parasites extracted larger blood meals from female than male hosts. Finally, the abundance of parasites in nests was predicted by brood sex ratio: broods containing more female young harboured more parasites. Hence, within‐brood variation in host susceptibility to parasites can not only influence the costs of parasitism for individual nestlings, but may also have consequences for the size of parasite populations within nests. If patterns of maternal investment affect the abundance of nest‐dwelling parasites, these interactions may be important for understanding fitness consequences of maternal resource allocation in many vertebrate hosts.  相似文献   

19.
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.  相似文献   

20.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号