首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613-622, 2000)  相似文献   

2.
Light exposure during the early and late subjective night generally phase delays and advances circadian rhythms, respectively. However, this generality was recently questioned in a photic entrainment study in Octodon degus. Because degus can invert their activity phase preference from diurnal to nocturnal as a function of activity level, assessment of phase preference is critical for computations of phase reference [circadian time (CT) 0] toward the development of a photic phase response curve. After determining activity phase preference in a 24-h light-dark cycle (LD 12:12), degus were released in constant darkness. In this study, diurnal (n = 5) and nocturnal (n = 7) degus were randomly subjected to 1-h light pulses (30-35 lx) at many circadian phases (CT 1-6: n = 7; CT 7-12: n = 8; CT 13-18: n = 8; and CT 19-24: n = 7). The circadian phase of body temperature (Tb) onset was defined as CT 12 in nocturnal animals. In diurnal animals, CT 0 was determined as Tb onset + 1 h. Light phase delayed and advanced circadian rhythms when delivered during the early (CT 13-16) and late (CT 20-23) subjective night, respectively. No significant phase shifts were observed during the middle of the subjective day (CT 3-10). Thus, regardless of activity phase preference, photic entrainment of the circadian pacemaker in Octodon degus is similar to most other diurnal and nocturnal species, suggesting that entrainment mechanisms do not determine overt diurnal and nocturnal behavior.  相似文献   

3.
4.
Phase-response experiments using 1-h light pulses (LPs) of 1,100 lux applied under constant dim light of 0.3 lux were conducted with common marmosets, Callithrix j. jacchus, in order to obtain a complete phase-response curve established according to the common experimental procedure in a diurnal primate. Maximal phase delays of the free-running circadian activity rhythm (- 90 min) were induced by LPs delivered at circadian time (CT) 12; e.g., during the beginning of the marmosets' rest time, maximal advances (+ 25 min) were elicited by pulses administered during the late subjective night at CT 21. In contrast to rodents, neither regular transient cycles nor regular period responses resulted from LP applications at different phases. To check whether the underlying period length affects the phase response in primates as well, the marmosets' circadian timing system was entrained to 25 h by a lightrdark (LD) cycle of 12.5:12.5 h. The 1-h LPs were delivered during the first circadian cycle produced under constant dim light after the entraining LD periods. Here, LPs applied at CT 21 led to phase advances exceeding those measured during the steady-state free run. At CT 12, minor or no phase delays could be elicited. These findings show that the phase-shifting effect of LPs on the circadian system of marmosets is similar to that observed in other diurnal mammals. Some of the results indicate that in this diurnal primate, LP-induced phase shifts may be mediated in part by a light-induced increase in locomotor activity (arousal).  相似文献   

5.
Phase responses to red and blue light pulses were measured at different times during the circadian cycle (phase response curves, PRC) in the marine unicellular dinoflagellate Gonyaulaxpolyedra Stein. Pulses were given during a 24-h period of darkness; thereafter, cultures were released into constant dim red light for the assessment of phase and period. The results confirmed earlier findings that the Gonyaulax circadian system receives light signals via two distinct input pathways. During the subjective day and for the first 3 h of the subjective night, red and blue light pulses led to identical phase responses. For the rest of the circadian cycle, however, phase responses to pulses of either red or blue light differed drastically both in their amplitude and direction (advances or delays). Thus, the Gonyaulax light PRC is generated by two distinct light responses. One of these represents responses via a light input that is responsive both to red and blue light mainly producing small delays. The other represents responses of a primarily blue-sensitive input system leading to large advances restricted to the subjective night. Via feed-back, the blue-sensitive light input appears to be under the control of the circadian system. Received: 27 November 1996/Accepted: 30 January 1997  相似文献   

6.
Some basic properties of the adult locomotor activity rhythm and of the maternal induction of larval diapause in Calliphora vicina are described. Diapause responses in Nanda-Hamner experiments indicate that circadian rhythmicity is involved in photoperiodic time measurement (PPTM). However, although the locomotor rhythm shows long-lasting changes in free-running period (aftereffects of photoperiod and constant light) and occasional "splitting," thereby indicating a structural complexity to the circadian system, the overt rhythm may be used as an indicator of phase relationships (or "hands") of the covert system involved in PPTM, within the framework of a simple external-coincidence model for the diapause clock. Thus, in light-dark (LD) cycles close to "resonance" with the circadian pacemaker(s) (T 24, LD 12:12; T 48, LD 12:36; and T 72, LD 12:60), light is restricted to the subjective day and diapause incidence is high. In T 36 (LD 12:24) and T 60 (LD 12:48), light falls into the subjective night and illuminates the postulated light-sensitive phase (phi i), and diapause incidence is low. Within the primary range of entrainment, light invades the late subjective night in T 20 (LD 12:8), illuminates phi i, and causes low incidence of diapause; however, it invades the early subjective night in T 30 (LD 12:18) and diapause remains high.  相似文献   

7.
Mice lacking the CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hour light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle. The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock(-/-) mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock(-/-) mice exhibit very large phase advances after 4-hour light pulses in the late subjective night but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12-hour light:12-hour dark lighting schedule. To assess this relationship further, Clock(-/-) and wild-type control mice were entrained to skeleton lighting cycles (1L:23D and 1L:10D:1L:12D). Comparing entrainment under the 2 types of skeleton photoperiods revealed that exposure to 1-hour light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock(-/-) mice but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock(-/-) mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light.  相似文献   

8.
Effects of 15 min light pulses given at various intervals (every 1, 2, 4, 6, 8 and 12 hr) under constant darkness on the locomotor rhythm were investigated in the adult male cricket, Gryllus bimaculatus. A single pulse per 24 hr induced period modulation in a circadian phase dependent manner, yielding a period modulation curve (PMC): the 15 min light pulse lengthened the period in the early subjective night (CT11-16) and shortened it during the late subjective night to the early subjective day (CT20-5). Frequent light pulses modulated the freerunning period of the rhythm dependent on the interval of the pulses: when compared with the freerunning period in DD (23.74 +/- 0.03 hr) the period was significantly shorter in intervals of 2 and 4 hr, but lengthened when the interval was 1 and 12 hr. Frequent light pulses also resulted in entrainment of the rhythm to run with the period of 24 hr and the ratio of the entrained animals varied from 12% to 72% depending on the interval of the light pulses. The period modulation and the entrainment by the repetitive light pulses could be interpreted according to the PMC. In about 15% of animals, the light pulses induced a rhythm dissociation, suggesting that the bilaterally paired circadian pacemakers have their own sensitivity to the entraining photic information. The light pulse caused a masking effect, i.e., an intense burst of activity. The magnitude of the light induced responses was dependent on the circadian phase. The strongest masking effect was observed in the subjective night. The phase of the prominent period modulation and of the marked masking effects well coincides with the previously reported sensitive phase of the photoreceptive system.  相似文献   

9.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment.  相似文献   

10.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

11.
Summary Locomotor activity of the river lamprey, Lampetra japonica, was investigated under a light-dark (LD 1212) cycle and under continuous dark conditions. Intact lampreys were entrained to the light:dark cycle. They were active mainly in the early half of the dark period and inactive in light period. The light:dark entrainment continued in 72.7% of lampreys after the removal of bilateral eyes, but additional pinealectomy made the entrainment disappear in all lampreys. When lampreys were pinealectomized with their eyes intact, light: dark entrainment was abolished in most cases. The results indicate that the pineal organ of the lamprey is a photoreceptive organ responsible for synchronizing locomotor activity to LD cycle. Under continuous dark conditions, the locomotor activity began to free-run with a period of 21.3 ± 0.9 h (mean ± SD, n = 53). This circadian rhythmicity was not affected by the removal of lateral eyes but was abolished by pinealectomy. The pineal organ appears to function as an oscillator, or as one of the oscillators, for the circadian locomotor rhythm of lampreys.Abbreviations DD continuous dark - LD light:dark  相似文献   

12.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

13.
Abstract

Sugar Gliders (Petaurus breviceps) re‐entrain faster after 8‐h delay shifts of an LD 12:12 and an LD 8:16 (31–56:0.3 lux each) than after 8‐h advance shifts of these Zeitgeber cycles. In order to test whether this asymmetric re‐entrainment behavior is related to, or even caused by the phase response characteristics of the circadian system, the phase response of the activity rhythm to short and long light pulses was studied. Short light pulses (15 min of 31–56 lux against a background intensity of 0.3 lux) caused only relatively small delay shifts when applied around the onset, and more pronounced advance shifts when given at the end of the activity time (α). Onset and end of activity shifted by different amounts. Long light pulses produced by 8‐h advances and delays of one single lighttime of an LD 12:12 elicited pronounced phase delays when applied at the beginning of the activity time, but only minor phase advances when given at the posterior part of α. These results indicate that in Petaurus breviceps the phase response characteristics to long light pulses exerting parametric effects of light are responsible for the pronounced asymmetry effect in re‐entrainment. Differing phase responses of onset and end of activity point to a two‐oscillator structure of the circadian pacemaker system in this marsupial.  相似文献   

14.
Phase-response experiments using 1-h light pulses (LPs) of 1,100 lux applied under constant dim light of 0.3 lux were conducted with common marmosets, Callithrix j. jacchus, in order to obtain a complete phase-response curve established according to the common experimental procedure in a diurnal primate. Maximal phase delays of the free-running circadian activity rhythm (- 90 min) were induced by LPs delivered at circadian time (CT) 12; e.g., during the beginning of the marmosets' rest time, maximal advances (+ 25 min) were elicited by pulses administered during the late subjective night at CT 21. In contrast to rodents, neither regular transient cycles nor regular period responses resulted from LP applications at different phases. To check whether the underlying period length affects the phase response in primates as well, the marmosets' circadian timing system was entrained to 25 h by a lightrdark (LD) cycle of 12.5:12.5 h. The 1-h LPs were delivered during the first circadian cycle produced under constant dim light after the entraining LD periods. Here, LPs applied at CT 21 led to phase advances exceeding those measured during the steady-state free run. At CT 12, minor or no phase delays could be elicited. These findings show that the phase-shifting effect of LPs on the circadian system of marmosets is similar to that observed in other diurnal mammals. Some of the results indicate that in this diurnal primate, LP-induced phase shifts may be mediated in part by a light-induced increase in locomotor activity (arousal).  相似文献   

15.
Although chronic alcohol intake is associated with widespread disruptions of sleep-wake cycles and other daily biological rhythms in both human alcoholics and experimental animals, the extent to which the chronobiological effects of alcohol are mediated by effects on the underlying circadian pacemaker remains unknown. Nevertheless, recent studies indicate that both adult and perinatal ethanol treatments may alter the free-running period and photic responsiveness of the circadian pacemaker. The present experiment was designed to further characterize the effects of chronic ethanol intake on the response of the rat circadian pacemaker to brief light pulses. Ethanol-treated and control animals were exposed to 15-min light pulses during either early or late subjective night on the first day of constant darkness following entrainment to a 12:12 light-dark cycle. Relative to pulses delivered during early subjective night and to “no-pulse” conditions, light pulses delivered during late subjective night resulted in period-shortening after-effects under constant darkness, but only in control animals, not in ethanol-treated animals. These results indicate that chronic ethanol intake reduces the responsiveness of the circadian pacemaker to acute photic stimulation, and suggest that the chronobiological disruptions seen in human alcoholics are due in part to alterations in circadian pacemaker function.  相似文献   

16.
The effects of raising cockroaches, Leucophaea maderae, in non-24-h light cycles on the response of the circadian system to light was examined. 1. Phase response curves (PRC) were measured for 6-h light pulses for animals raised in LD 11:11 (T22), LD 12:12 (T24), and LD 13:13 (T26). The delay portion of the PRC was found to be significantly reduced in T22 animals (compared to T24 animals) while the advance portion of the PRC was reduced in T26 animals. Compared to T26 animals, phase shifts were more positive at every phase for animals raised in T22. 2. When transferred from constant darkness (DD) to constant light (LL) the freerunning period lengthened significantly less for T22 animals than T24 animals, and in some cases tau in LL was actually shorter than tau in DD in T22 animals. Animals raised in LL were inactive when exposed to LL as adults, and unlike T24 animals, were consistently reset to the beginning of the subjective night (near CT 12) when transferred to DD. 3. Roaches raised in T22 would entrain to LD 6:18, but a few animals exhibited periods of relative coordination indicating that the 24-h light cycle was near the limits of entrainment. These results indicate that the circadian system's responsiveness to light, as well as its freerunning period (Barrett and Page 1989), is dependent on the lighting conditions to which the animals are exposed during development.  相似文献   

17.
Recent work with exotic 24-h light:dark:light:dark (LDLD) cycles indicates surprising flexibility in the entrainment patterns of Syrian hamsters. Following exposure to an LDLD cycle, hamsters may adopt a form of rhythm splitting in which markers of subjective night (e.g., activity, melatonin) are expressed in each of the twice daily scotophases. This pattern contrasts markedly with that of conventionally entrained hamsters in which markers of subjective night are expressed once daily in only 1 of the 2 dark periods. The "split" entrainment pattern was examined further here in Syrian and Siberian hamsters and in mice exposed to LDLD 7:5:7:5, a condition that reliably induces split activity rhythms in all 3 species. The phase angle of entrainment and activity duration were generally similar comparing the 2 daily activity bouts in each species. The stability of this split entrainment state was assessed by deletions of photophases on individual days, by exposure to skeleton photoperiods, and by transfer to constant darkness. As in Syrian hamsters, the one-time substitution of darkness for one 7-h photophase did not grossly alter activity patterns of Siberian hamsters but acutely disrupted the split rhythms of mice. Skeleton light pulses of progressively shorter duration did not significantly alter split entrainment patterns of either Syrian or Siberian hamsters. Both species continued to exhibit stable entrainment with activity expressed in alternate scotophases of an LD 1:5 cycle presented 4 times daily. In contrast, the split activity rhythms of mice were not maintained under skeleton pulses. In constant darkness, rhythms of Siberian hamsters remained distinctly split for a minimum of 2 cycles. Split entrainment to these novel LDLD and 4-pulse skeleton lighting regimes demonstrates a marked degree of plasticity common to the circadian systems of several rodent species and identifies novel entrainment patterns that may be reliably elicited with simple environmental manipulations. Inter- and intraspecific differences in the stability of split activity rhythms likely reflect differences in coupling interactions between the component circadian oscillators, which, adopting separate phase relations to these novel LD cycles, yield a split entrainment pattern.  相似文献   

18.
The locomotor activity rhythms were examined by using an actograph with infra-red photo-electric switches for two species of wrasses, (Halichoeres tenuispinnis andPteragogus flagellifera) under various light conditions. InH. tenuispinnis, the locomotor activity of almost all fish under light-dark cycle regimen (LD12:12; 06:00–18:00 light, 18:00–06:00 dark) commenced somewhat earlier than the beginning of light period and continued till somewhat earlier than the beginning of the dark period. This species clearly showed free-running activity rhythms under both constant illumination (LL) and constant darkness (DD). Therefore,H. tenuispinnis appeared to have a circadian rhythm. The length of the circadian period ranged from 23 hr. 30 min. to 23 hr. 44 min. under LL, and was from 23 hr. 39 min. to 24 hr. 18 min. under DD. On the other hand, the locomotor activity ofP. flagellifera occurred mostly in the light period under LD 12:12. The activity of this species continued through LL, but was greatly suppressed in DD, so that none of the fish had any activity rhythm in both constant conditions. It was known from field observations thatH. tenuispinnis burrowed and lay in sandy bottoms, whileP. flagellifera hid and rested in bases of seagrasses and shallow crevices of rocks during the night. In the present two wrasses, it seemed that the above-mentioned difference of noctural behavior was closely related to the intensity of the endogenous factor in the activity rhythm.  相似文献   

19.
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.  相似文献   

20.
Male crickets of the species Teleogryllus commodus express circadian rhythms in both their stridulatory and locomotory behaviours. Both forms of activity show the same free-running period (τ) in either DD (23·4 hr) or LL (25·1 hr). Although some overlap is seen between periods of locomotion and stridulation, the majority of each activity is found in different phases of the circadian cycle: locomotion occurs mainly in the subjective day and stridulation in the subjective night. Entraining LD cycles with photoperiods of 12 hr produce exogenous effects that can obscure endogenous components of the rhythms. Red light (λ>600 nm) causes the period to lengthen and RD cycles can entrain both rhythms. Single white light pulses of 2 or 6 hr did not produce significant phase shifts, but did cause τ to shorten when given in the subjective night. The significance of these observations is discussed. Given the results obtained to date, it is not likely that each rhythm is under the control of a separate circadian pacemaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号