首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that plays a critical role in tissue repair and fibrosis. Sphingolipid signaling has been shown to regulate a variety of cellular processes and has been implicated in collagen gene regulation. The present study was undertaken to determine whether endogenous sphingolipids are involved in the TGF-beta signaling pathway. TGF-beta treatment induced endogenous ceramide levels in a time-dependent manner within 5-15 min of cell stimulation. Using human fibroblasts transfected with a alpha2(I) collagen promoter/reporter gene construct (COL1A2), C(6)-ceramide (10 microm) exerted a stimulatory effect on basal and TGF-beta-induced activity of this promoter. Next, to define the effects of endogenous sphingolipids on TGF-beta signaling we employed ectopic expression of enzymes involved in sphingolipid metabolism. Sphingosine 1-phosphate phosphatase (YSR2) stimulated basal COL1A2 promoter activity and cooperated with TGF-beta in activation of this promoter. Furthermore, overexpression of YSR2 resulted in the pronounced increase of COL1A1 and COL1A2 mRNA levels. Conversely, overexpression of sphingosine kinase (SPHK1) inhibited basal and TGF-beta-stimulated COL1A2 promoter activity. These results suggest that endogenous ceramide, but not sphingosine or sphingosine 1-phosphate, is a positive regulator of collagen gene expression. Mechanistically, we demonstrate that Smad3 is a target of YSR2. TGF-beta-induced Smad3 phosphorylation was elevated in the presence of YSR2. Cotransfection of YSR2 with wild-type Smad3, but not with the phosphorylation-deficient mutant of Smad3 (Smad3A), resulted in a dramatic increase of COL1A2 promoter activity. In conclusion, this study demonstrates a direct role for the endogenous sphingolipid mediators in regulating the TGF-beta signaling pathway.  相似文献   

3.
4.
5.
Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake.  相似文献   

6.
7.
8.
9.
Despite major advances in the understanding of the intimate mechanisms of transforming growth factor-beta (TGF-beta) signaling through the Smad pathway, little progress has been made in the identification of direct target genes. In this report, using cDNA microarrays, we have focussed our attention on the characterization of extracellular matrix-related genes rapidly induced by TGF-beta in human dermal fibroblasts and attempted to identify the ones whose up-regulation by TGF-beta is Smad-mediated. For a gene to qualify as a direct Smad target, we postulated that it had to meet the following criteria: (1) rapid (30 min) and significant (at least 2-fold) elevation of steady-state mRNA levels upon TGF-beta stimulation, (2) activation of the promoter by both exogenous TGF-beta and co-transfected Smad3 expression vector, (3) up-regulation of promoter activity by TGF-beta blocked by both dominant-negative Smad3 and inhibitory Smad7 expression vectors, and (4) promoter transactivation by TGF-beta not possible in Smad3(-/-) mouse embryo fibroblasts. Using this stringent approach, we have identified COL1A2, COL3A1, COL6A1, COL6A3, and tissue inhibitor of metalloproteases-1 as definite TGF-beta/Smad3 targets. Extrapolation of this approach to other extracellular matrix-related gene promoters also identified COL1A1 and COL5A2, but not COL6A2, as novel Smad targets. Together, these results represent a significant step toward the identification of novel, early-induced Smad-dependent TGF-beta target genes in fibroblasts.  相似文献   

10.
11.
Phosphoinositide 3OH-kinases (PI3K) are a family of lipid kinases that activates signalling pathways important for migration, cytoskeletal rearrangements, and cell survival. These processes are important hallmarks in transformation. We have evaluated the functional role of PI3K for development of a transformed morphology and migratory responses of murine fibroblasts (NIH/sis and COL1A1/NIH3T3 cell lines) stimulated in an autocrine fashion by constitutive expression of platelet-derived growth factor-BB (PDGF-BB). We show that prolonged treatment with the specific PI3K inhibitor LY294002, induced a reversion of the transformed morphology, and prevented density-independent growth and focus formation. Functional PI3K was also required for development of the transformed morphology of NIH/sis and COL1A1/NIH3T3. Furthermore, treatment with LY294002 completely perturbed random migration of the cells. In addition our data show that, in the signalling pathways downstream of PI3K, activation of the small GTPase Rac was a prerequisite for the transformation signal. Our data also indicate the presence of a suramin-insensitive PI3K activity. Most likely this was due to the presence of a suramin-insensitive intracellular PDGFR pool that allowed activation of PI3K located in intracellular compartments. In conclusion these data show that intact PI3K activity was required for the morphological alterations and the enhanced migratory response that are hallmarks for PDGF induced autocrine transformation.  相似文献   

12.
13.
The role of integrin-linked kinase (ILK) in transforming growth factor beta (TGFbeta)-mediated epithelial to mesenchymal transition was investigated. A stable transfection of dominant-negative ILK results in the prevention of TGFbeta-mediated E-cadherin delocalization. TGFbeta-mediated phosphorylation of Akt at Ser-473 was inhibited by dominant-negative ILK and PI3K inhibitors, LY294002 and wortmannin. Treatment with TGFbeta stimulated induction of Akt and ILK kinase activity in HaCat control cells. This increased ILK activity by TGFbeta was lowered by PI3K inhibitor, LY294002. In addition, PI3K inhibitor, dominant-negative Akt, and dominant-negative ILK could not block TGFbeta-mediated C-terminal phosphorylation of Smad2. Taken together, these data suggest that PI3K-ILK-Akt pathway that is independent of the TGFbeta-induced Smad pathway is required for TGFbeta-mediated epithelial to mesenchymal transition.  相似文献   

14.
15.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R- fibroblasts lacking IGF-1 receptors. In these R- cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1-Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R- cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1-Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

16.
The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-beta1 (TGF-beta1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-beta1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-beta1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-beta1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-beta1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-beta1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-beta1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-beta1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pretreated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-beta1. In conclusion, TGF-beta1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system.  相似文献   

17.
18.
19.
20.
Overactivation of microglial cells may cause severe brain tissue damage in various neurodegenerative diseases. Therefore, the overactivation of microglia should be repressed by any means. The present study investigated the potential mechanism and signaling pathway for the repressive effect of TGF-beta1, a major anti-inflammatory cytokine, on overactivation and resultant death of microglial cells. A bacterial endotoxin LPS stimulated expression of inducible NO synthase (iNOS) and caused death in cultured microglial cells. TGF-beta1 markedly blocked these LPS effects. However, the LPS-evoked death of microglial cells was not solely attributed to excess production of NO. Because phosphatidylinositol 3-kinase (PI3K) was previously shown to play a crucial role in iNOS expression and cell survival signals, we further studied whether PI3K signaling was associated with the suppressive effect of TGF-beta1. Like TGF-beta1, the PI3K inhibitor LY294002 blocked iNOS expression and death in cultured microglial cells. Both TGF-beta1 and LY294002 decreased the activation of caspases 3 and 11 and the mRNA expression of various kinds of inflammatory molecules caused by LPS. TGF-beta1 was further found to decrease LPS-induced activation of PI3K and Akt. TGF-beta1 and LY294002 suppressed LPS-induced p38 mitogen-activated kinase and c-Jun N-terminal kinase activity. In contrast, TGF-beta1 and LY294002 enhanced LPS-induced NF-kappaB activity. Our data indicate that TGF-beta1 protect normal or damaged brain tissue by repressing overactivation of microglial cells via inhibition of PI3K and its downstream signaling molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号