首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Preincubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) preparations from rabbit kidney outer medulla with 5,5'-dithiobis-(2-nitrobenzoic acid) inhibits the (Na+ + 5+)-ATPase and K+-stimulated 4-nitro-phenylphosphatase activities. Phosphorylation of the enzyme by ATP and the Na+-stimulated ATPase activity are inhibited to the same extent as the (Na+ + K+)-ATPase activity, whereas the K+-stimulated 4-nitrophenylphosphatase activity is inhibited much less. 2. Titration with 5,5'-dithiobis-(2-nitrobenzoic acid) in sodium dodecyl sulphate shows the presence of 36 reactive sulfhydryl groups per molecule (Na+ + K+)-ATPase (Mr = 250 000). 3. Treatment with N-ethylmaleimide, resulting in complete inhibition of (Na+ + K+)-ATPase activity, leads to modification of 26 sulfhydryl groups, whereas treatment with 5,5'-dithiobis-(2-nitrobenzoic acid) results in modification of 12 sulfhydryl groups under the same conditions. 4. The reaction of N-ethylmaleimide with an essential SH-group is not prevented by previous blocking of sulfhydryl groups with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. These findings indicate the existence of at least two classes of sulfhydryl groups on the enzyme, each containing at least one vital group. The difference between these classes consists in their different reactivity towards 5,5'-dithiobis-(2-nitrobenzoic acid) and N-ethylmaleimide.  相似文献   

2.
(Na+ + K+)-ATPase activity of a dog kidney enzyme preparation was markedly inhibited by 10-30% (v/v) dimethyl sulfoxide (Me2SO) and ethylene glycol (Et(OH)2); moreover, Me2SO produced a pattern of uncompetitive inhibition toward ATP. However, K+-nitrophenylphosphatase activity was stimulated by 10-20% Me2SO and Et(OH)2 but was inhibited by 30-50%. Me2SO decreased the Km for this substrate but had little effect on the Vmax below 30% (at which concentration Vmax was then reduced). Me2SO also reduced the Ki for Pi and acetyl phosphate as competitors toward nitrophenyl phosphate but increased the Ki for ATP, CTP and 2-O-methylfluorescein phosphate as competitors. Me2SO inhibited K+-acetylphosphatase activity, although it also reduced the Km for that substrate. Finally, Me2SO increased the rate of enzyme inactivation by fluoride and beryllium. These observations are interpreted in terms of the E1P to E2P transition of the reaction sequence being associated with an increased hydrophobicity of the active site, and of Me2SO mimicking such effects by decreasing water activity: (i) primarily to stabilize the covalent E2P intermediate, through differential solvation of reactants and products, and thereby inhibiting the (Na+ + K+)-ATPase reaction and acting as a dead-end inhibitor to produce the pattern of uncompetitive inhibition; inhibiting the K+-acetylphosphatase reaction that also passes through an E2P intermediate; but not inhibiting (at lower Me2SO concentrations) the K+-nitrophenylphosphatase reaction that does not pass through such an intermediate; and (ii) secondarily to favor partitioning of Pi and non-nucleotide phosphates into the hydrophobic active site, thereby decreasing the Km for nitrophenyl phosphate and acetyl phosphate, the Ki for Pi and acetyl phosphate in the K+-nitrophenylphosphatase reaction, accelerating inactivation by fluoride and beryllium acting as phosphate analogs, and, at higher concentrations, inhibiting the K+-nitrophenylphosphatase reaction by stabilizing the non-covalent E2.P intermediate of that reaction. In addition, Me2SO may decrease binding at the adenine pocket of the low-affinity substrate site, represented as an increased Ki for ATP, CTP and 3-O-methylfluorescein phosphate.  相似文献   

3.
Rubratoxin B, a lactone-containing bisanhydride metabolite of certain toxigenic molds, inhibited (Na+-K+)-stimulated ATPase activity of mouse brain microsomes in a dose-dependent manner with an estimated IC50 of 6 x 10(-6) M. Hydrolysis of ATP was linear with time and enzyme concentration, with or without rubratoxin in reaction mixtures. Altered pH and activity curves for (Na+-K+)-ATPase demonstrated comparable inhibition by rubratoxin in buffered acidic, neutral, and alkaline pH ranges. Kinetic studies of cationic-substrate activation of (Na+-K+)-ATPase indicated classical competitive inhibition for Na+ and K+. Results also showed competitive inhibition for K+ activated p-nitrophenyl phosphatase as demonstrated by altered binding site parameters without change in the catalytic velocity of dephosphorylation of the enzyme . phosphoryl complex. Noncompetitive inhibition with regards to activation by ATP and p-nitrophenyl phosphate was indicated by altered Vmax values with no change in Km values. Inhibition was partially restored by repeated washings. Preincubation with sulfhydryl agents protected the enzyme from inhibition. Cumulative inhibition studies with rubratoxin and ouabain indicated possible interaction between the two inhibitors of (Na+-K+)-ATPase. Rubratoxin appeared to exert its effects on (Na+-K+)-ATPase by interacting at Na+ and K+ sites.  相似文献   

4.
In human red cell membranes the sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is at least ten times larger than the sensitivity to N-ethylmaleimide of (Na+ + K+)-ATPase and K+-activated phosphatase activities. All activities are partially protected against N-ethylmaleimide by ATP but not by inorganic phosphate or by p-nitrophenylphosphate. (ii) Protection by ATP of (Na+ + K+)-ATPase is impeded by either Na+ or K+ whereas only K+ impedes protection by ATP of K+-activated phosphatase. On the other hand, Na+ or K+ slightly protects Ca2+-dependent activities against N-ethylmaleimide, this effect being independent of ATP. (iii) The sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is markedly enhanced by low concentrations of Ca2+. This effect is half-maximal at less than 1 micron Ca2+ and does not require ATP, which suggests that sites with high affinity for Ca2+ exist in the Ca2+-ATPase in the absence of ATP. (IV) Under all conditions tested the response to N-ethylmaleimide of the ATPase and phosphatase activities stimulated by K+ or Na+ in the presence of Ca2+ parallels that of the Ca2+-dependent activities, suggesting that the Ca2+-ATPase system possesses sites at which monovalent cations bind to increase its activity.  相似文献   

5.
Ouabain-binding and phosphorylation of (Na+ mk+)-ATPase (EC 3.6.1.3) of the plasma membranes from kidney were investigated after treatment with N-ethylmaleimide or oligomycin. Either of these inhibitors brought about the following changes: the phosphoenzyme, formed in the presence of Na+, Mg2+ and ATP became essentially insensitive to splitting by K+ but was split by ADP. One mole of this ADP-sensitive phosphoenzyme bound one mole of ouabain but the enzyme-ouabain complex was less stable than in the native enzyme primarily because the rate of its dissociation increased. Ouabain was bound to the ADP-sensitive phosphoenzyme in the presence of Mg2+ alone and addition of inorganic phosphate enhanced both the rate of formation and the steady-state level of the enzyme-ouabain complex. The inhibitors did not affect the properties of this second type of complex. Both in the native enzyme and in the enzyme treated with the two inhibitors inorganic phosphate enhanced ouabain binding by phosphorylating the active center of the enzyme as shown (a) by mapping the labeled peptides from the enzyme after peptic digestion, (b) by inhibition of this phosphorylation with Na+ and (c) by the 1:1 stoichiometric relation between this phosphorylation and the amount of bound ouabain. Unlike the phosphoenzyme, the binding of ouabain remained sensitive to K+ in the enzyme treated with the inhibitors. K+ slowed ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding than to stimulate dephosphorylation. This finding is interpreted as being an indication of separate sites for K+ on the enzyme: a site(s) with high K+-affinity which stimulates dephosphorylation, another site(s) with moderate K+-affinity which inhibits ouabain-binding. Inhibitors may enhance formation of the ADP-sensitive phosphoenzyme by blocking interaction between K+ and the site(s) with high affinity.  相似文献   

6.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

7.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

8.
Treatment of a purified (NA+ + 5+)-ATPase preparation from dog kidney with digitonin reduced enzymatic activity, with the (Na+ + k+)-atpase reaction inhibited more than the K+-phosphatase reaction that is also catalyzed by this enzyme. Under the usual assay conditions oligomycin inhibits the (Na+ + k+)-atpase reaction but not the K+-phosphatase reaction; however, treatment with digitonin made the K+-phosphatase reaction almost as sensitive to oligomycin as the (Na+ + k+)-atpase reaction. The non-ionic detergents, Triton X-100, Lubrol WX and Tween 20, also conferred sensitivity to oligomycin on the K+-phosphatase reaction (in the absence of oligomycin all these detergents, unlike digitonin, inhibited the K+-phosphatase reaction more than the (Na+ + k+)-atpase reaction). Both digitonin and Triton markedly increased the K0.5 for K+ as activator of the K+-phosphatase reaction, with little effect on the K0.5 for K+ as activator of the (Na+ + k+)-ATpase reaction. In contrast, increasing the K0.5 for K+ in the K+-phosphatase reaction by treatment of the enxyme with acetic anhydride did not confer sensitivity to oligomycin. Both digitonin and Triton also increased the inhibition of the K+-phosphatase reaction by ATP and increased the inhibition by inorganic phosphate and vanadate. These observations are interpreted as digitonin and Triton favoring the E1 conformational state of the enzyme (manifested by sensitivity to oligomycin and a greater affinity for ATP at the low-affinity substrate sites), as opposed to the E2 state (manifested by insensitivity to oligomycin, greater sensitivity to phosphate and vanadate, and a lower K0.5 for K+ in the K+-phosphatase reaction). In addition, digitonin blocked activation of the phosphatase reaction by Na+ plus CTP. This effect is consistent with digitonin dissociating the catalytic subunits of the enzyme, the interaction of which may be essential for activation by Na+ plus nucleotide.  相似文献   

9.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

10.
A Mg2+-induced change of the (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from Electrophorus electricus was investigated by kinetics and fluorescence techniques. Binding of Mg2+ to a low affinity site(s) caused inhibition of (Na+,K+)-ATPase activity, an effect which was antagonized by both Na+ and ATP. Mg2+ also caused inhibition of K+-dependent dephosphorylation of the enzyme without inhibiting either (Na+)-ATPase activity or Na+-dependent phosphorylation. Mg2+ also induced a 5 to 6% enhancement in the fluorescence intensity of enzyme labeled with the fluorescent sulfhydryl reagent, 2-(4-maleimidylanilino)naphthalene-6-sulfonate. As in the case of Mg2+ inhibition of activity, the affinity for Mg2+ as an inducing agent for this effect was significantly reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced in magnitude by ouabain and prevented by oligomycin, specific inhibitors of the enzyme. In addition, K+ (and cations that substitute for K+ in supporting activity) induced a 3 to 4% enhancement in fluorescence intensity in the presence of Na+, Mg2+, and ATP, although the K+ and Mg2+ effects appeared to be different on the basis of their excitation spectra. The K+ effect was inhibited by ouabain and occurred with a rate greater than the rate of turnover of the enzyme, permitting its involvement in the catalytic cycle.  相似文献   

11.
1. The K+-nitrophenylphosphatase activity associated with mammalian brain (Na+ + K+)-ATPase displays K+ activation curves that have intermediary plateaus and maxima in the presence of less than saturating concentrations of Na+. Zero Na+ and saturating Na+ produce sigmoid K+-activation curves with low and high K+ affinities respectively. 2. ATP inhibits K+-activated nitrophenylphosphatase through both competitive and non-competitive mechanisms. ATP is synergistic with Na+ in the mechanism which converts the enzyme from low to high K+ affinity. 3. The Na+ and K+ interactions can be accounted for by equations which describe a model with separate regulatory sites for Na+ and K+ and with K+- requiring catalytic site which is only accessible in one of the two principal conformational stages of the enzyme. 4. The effects of ATP can be accounted for by the same model through interactions at a single nucleotide binding site. Inhibition which is competitive with K+ and non-competitive with substrate arises from stabilization of the inactive enzyme conformation. Inhibition which is non-competitive with K+ and competitive with substrate results from interactions with the active enzyme conformation. The synergism between Na+ and ATP appears to arise as a consequence of the formation of phosphoryl enzyme. 5. A model for (Na+ + K+)-ATPase is discussed which involves in-phase coupling of subunit interactions as suggested by these studies.  相似文献   

12.
Inhibition by vanadate of the K+-dependent p-nitrophenylphosphatase activity catalyzed by the (Na+ + K+)-ATPase partially purified from pig kidney showed competitive behavior with the substrate, K+ and Mg2+ acted as cofactors in promoting that inhibition. Ligands which inhibited the K+-dependent p-nitrophenyl phosphate hydrolysis (Na+, nucleotide polyphosphates, inorganic phosphate) protected against inhibition by vanadate. The magnitude of that protection was proportional to the inhibition produced in the absence of vanadate. In the presence of only p-nitrophenyl phosphate and Mg2+, or when the protective ligands were tested alone, the activation of p-nitrophenyl phosphate hydrolysis by K+ followed a sigmoid curve in the presence as well in the absence of vanadate. However, the combination of 100 mM NaCl and 3 mM ATP resulted in a biphasic effect of K+ on the p-nitrophenyl phosphate hydrolysis in the presence of vanadate. After an initial rise at low K+ concentration, the p-nitrophenylphosphatase activity declined at high K+ concentrations; this decline became more pronounced as the vanadate concentration was increased. This biphasic response was not seen when a nonphosphorylating ATP analog was combined with Na+ (which favors the nucleotide binding) or with inorganic phosphate (a requirement for K+ - K+ exchange). Experiments with inside-out resealed vesicles from human red cells showed that in the absence of Na+ plus ATP, K+ promoted vanadate inhibition of p-nitrophenylphosphatase activity in a nonbiphasic manner, acting at cytoplasmic sites. On the other hand, in the presence of Na+ plus ATP, the biphasic response of p-nitrophenyl phosphate hydrolysis is due to K+ acting on extracellular sites. In vanadate-poisoned intact red blood cells, the biphasic response of the ouabain-sensitive Rb+ influx as a function of the external Rb+ concentration failed to develop when there was no Na+ in the extracellular media. In addition, in the absence of extracellular Na+, external Rb+ did not influence the magnitude of inhibition. The present findings indicate that external K+ favors vanadate inhibition by displacing Na+ from unspecified extracellular membrane sites.  相似文献   

13.
A density gradient-purified microsomal membrane preparation from rabbit fundic gastric mucosa was used for a detailed study of the K+-stimulated ATPase and associated intermediate reactions. Membranes incubated with gamma-[32P]ATP show the rapid incorporation of 32P into phosphoprotein. Phosphoprotein levels were markedly reduced (1) when ATP hydrolysis went to completion or (2) upon addition of unlabeled ATP, thus suggesting the participation of a rapid turnover phosphorylated intermediate in the gastric microsomal ATPase. Addition of K+, Rb+ or Tl+ greatly reduced the level of the intermediate while stimulating ATPase activity; the observed affinities of these cations were similar for the effects on both ATPase and intermediate levels, with Tl+ greater than K+ greater than Rb+. Neither ATPase nor intermediate were stimulated by Na+, and ouabain was without effect on the reactions, thus differentiating this system from the (Na+ + K+)-ATPase. Addition of various inhibitors showed differential effects on the partial reactions of the gastric ATPase system. N-ethylmaleimide and Zn2+ showed characteristics of completely abolishing the K+-stimulated component of ATPase as well as the effects of K+ in reducing the level of intermediate, thus suggesting that these agents exert their inhibitory effect on a phosphoprotein phosphatase partial reaction. F- abolished the K+-stimulated ATPase, but its more complex effects on the intermediate suggested an additional reaction step within the domain of the phosphorylated intermediate. Results are consistent with a model system for the gastric microsomal ATPase involving a Mg2+-dependent protein kinase, a phosphorylated intermediate(s), and a K+-stimulated phosphoprotein phosphatase.  相似文献   

14.
Effects of ATP, acetyl phosphate (AcP) and p-nitrophenyl phosphate (p-NPP) on the inhibition of the Na+, K+-ATPase activity were studied. ATP, AcP and p-NPP were found to facilitate the ouabain-induced inhibition of the enzyme activity only after the injection of these phosphorylyzing agents into the erythrocyte ghosts. Inside the ghosts Na+ ions enhanced the effects of the phosphorylyzing agents. K+ ions in the environment removed the stimulating effects of ATP, AcP and p-NPP on the ouabain-induced inhibition of Na+, K+-ATPase activity. It is concluded that the sites of AcP and p-NPP hydrolysis as well as the active center for ATP are localized on the inner surface of the cell membrane.  相似文献   

15.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

16.
Showdomycin [2-(beta-D-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01-mol- minus 1-min- minus 1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 MUM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibiton is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

17.
The effect of phospholipase C on two isozymes (alpha (+) and alpha forms) of rat brain (Na+ + K+)-ATPase and the temperature-dependence of their activities were investigated. Phospholipase C from Clostridium welchii inhibited the activities of the enzymes treated with and without pyrithiamin or N-ethylmaleimide, a preferential inhibitor of the alpha (+) form, but the extent of the inhibition was higher in the control enzyme than in the treated enzymes. The treatment of the (Na+ + K+)-ATPase with phospholipase C altered a ratio between high- and low-affinity components for ouabain inhibition. It also caused the similar change in a ratio between the alpha (+) and alpha forms of Na+-stimulated phosphorylation from [gamma-32P]ATP. These findings indicate that the alpha (+) form of rat brain (Na+ + K+)-ATPase is more sensitive to phospholipase C than the alpha form. Analysis of Arrhenius plots of the activities of the control and pyrithiamin-treated enzymes showed that there was a difference between the two enzymes in a break point. We suggest that two isozymes of rat brain (Na+ + K+)-ATPase differ in the interaction with phospholipids or in the lipid-environment.  相似文献   

18.
The kinetic data of magnesium and inorganic phosphate inhibition of the (Na+,K+)-dependent ATP hydrolysis are consistent with a model where both ligands act independently and their release in the ATPase cycle is an ordered process where inorganic phosphate is released first. The effects of magnesium on the stimulation of the ATPase activity by Na+, K+ and ATP, and the inhibition of that activity by inorganic phosphate, are consistent with Mg2+ acting both as a 'product' and as a dead-end inhibitor. The dead-end Mg-enzyme complex would be produced with an enzyme form located downstream in the reaction sequence from the point where Mg2+ acts as a 'product' inhibitor. In the absence of K+, Mg2+ inhibition was reduced when either Na+ or ATP concentrations were increased well beyond those concentrations needed to saturate their high-affinity sites. This ATP effect suggests that the dead-end Mg-enzyme complex formation is affected by the speed of the E2-E1 conformational change. The present model is consistent with the formation of an Mg-phosphoenzyme complex insensitive to K+ which could become K+-sensitive in the presence of high Na+ concentrations. These Mg-enzyme complexes appear as intermediaries in the Na+-ATPase activity found in the absence of external Na+ and K+. These results can be interpreted on the basis of Mg2+ binding to a single site in the enzyme molecule. In addition, these experiments provide kinetic evidence indicating that the stimulation by external Na+ of the ATPase activity in the absence of K+ is due to a K+-like action of Na+ on the external K+ sites.  相似文献   

19.
Previous studies showed that microsomal (Na+ + K+)ATPase (ATP phosphohydrolase, EC 3.6.1.3) is activated by a proteinaeous material released by polymorphonuclear leukocytes. Investigations on the mode of action of the activator have been conducted by the siolation of 32P-labeled phosphoenzyme intermediates formed in the reaction of ATP and (Na+ + K)-ATPase, which has been postulated to occur through the formation and hydrolysis of acyl phosphate intermediates. The activator caused a concentration-dependent decrease in the recovery of phosphoenzyme intermediates that was not quantitatively altered by the Na+ or K+ concentration of the reaction mixture of by the presence of 1 mM oubain. A decline in phosphoenzyme intermediate recovery was promoted by the addition of the activator to preformed phosphoenzyme intermediates but not by activator that had been pretreated with protease or phenol. In addition, the activator caused a concentration-dependent stimulation of the p-nitrophenyl phosphatase and acetyl phosphatase activities of microsomal (Na+ + K+)-ATPase. It was proposed that the activator stimulates the dephosphorylation step of the (Na+ + K+)-ATPase reaction sequence.  相似文献   

20.
We have shown previously that the canine kidney Na+,K+ pump [Na+ + K+)-ATPase) reacts with the ATP affinity analog p-fluorosulfonylbenzoyladenosine (FSBA). At 20 degrees C, we find the time-course of this reaction to be that predicted for a first-order reaction accompanied by competing solvolysis of the reagent. The FSBA-inactivated (Na+ + K+)-ATPase retains the ability to move between the E1 and E2 conformations that predominate in Na+ and K+ medium, respectively. Therefore, FSBA reaction with the enzyme does not interfere significantly with either its alkali metal cation binding or its conformational freedom. The ability of ATP to influence the enzyme's conformation by binding to the high-affinity nucleotide site is decreased, however, in proportion to the degree of inhibition of enzyme activity by FSBA. In addition, the ability of the enzyme to shift from the E1 to the E2 conformation through the (ATP + Na+)-dependent phosphorylation cycle is inhibited by FSBA treatment, as shown by the decreased ability of these substrates to stimulate the K+-dependent p-nitrophenylphosphatase activity. Both of these effects are consistent with specific reaction of FSBA with the ATP binding site of the enzyme. An additional effect of FSBA treatment is that it causes loss of p-nitrophenylphosphatase activity, but to a lesser extent than (Na+ + K+)-ATPase or Na+-ATPase activity. Binding of p-nitrophenylphosphate to the enzyme is apparently unaffected by FSBA treatment, since the Km for p-nitrophenylphosphate is not changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号