首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insecticidal toxins produced by Bacillus thuringiensis interact with specific receptors located in the midguts of susceptible larvae, and the interaction is followed by a series of biochemical events that lead to the death of the insect. In order to elucidate the mechanism of action of B. thuringiensis toxins, receptor protein-encoding genes from many insect species have been cloned and characterized. In this paper we report the cloning, expression, and characterization of Cry toxin-interacting aminopeptidase N (APN) isolated from the midgut of a polyphagous pest, Spodoptera litura. The S. litura APN cDNA was expressed in the Sf21 insect cell line by using a baculovirus expression system. Immunofluorescence staining of the cells revealed that the expressed APN was located at the surface of Sf21 cells. Treatment of Sf21 cells expressing S. litura APN with phosphatidylinositol-specific phospholipase C demonstrated that the APN was anchored in the membrane by a glycosylphosphatidylinositol moiety. Interaction of the expressed receptor with different Cry toxins was examined by immunofluorescence toxin binding studies and ligand blot and immunoprecipitation analyses. By these experiments we showed that the bioactive toxin, Cry1C, binds to the recombinant APN, while the nonbioactive toxin, Cry1Ac, showed no interaction.  相似文献   

2.
The cadherin-related receptor of Manduca sexta, BT-R(1), for the Cry1A family of Bacillus thuringiensis insecticidal toxins, was expressed in cultured Spodoptera frugiperda (Sf21) insect cells utilizing the expression vector deltaOp-gp64. Recombinant BT-R(1) was released by the Sf21 cells in soluble form into the culture medium and represents approximately 58% of total BT-R(1) produced by the cells. The soluble protein was purified by affinity chromatography using Cry1Ab toxin coupled to Sepharose 4B. The apparent molecular mass of purified soluble recombinant BT-R(1) is 195 kDa. Radiolabeled toxin bound to purified soluble BT-R(1) with a K(d) value of 1.1 nM, which is similar to that of both membrane-bound BT-R(1) in Sf21 cells and natural BT-R(1) from M. sexta larval midgut tissue. Binding of radiolabeled toxin to soluble BT-R(1) was competitively inhibited by unlabeled Cry1Ab toxin but not by other Cry toxins as was observed also for membrane-bound BT-R(1). The recombinant soluble protein was stable in culture medium for at least 3 days at 27 degrees C and for 7 days at 4 degrees C and exhibited toxin-binding properties similar to the natural protein. Apparently, neither membrane association nor the extent of glycosylation influences the binding affinity and specificity of BT-R(1). Approximately 1 mg of purified BT-R(1) was obtained per liter of insect cell culture supernatant, representing approximately 2 x 10(9) Sf21 cells.  相似文献   

3.
4.
Insecticidal crystal proteins of Bacillus thuringiensis bind to receptors in the midgut of susceptible insects leading to pore formation and death of the insect. The identity of the receptor is not clearly established. Recently a direct interaction between a cloned and heterologously expressed aminopeptidase (slapn) from Spodoptera litura and the Cry1C protein was demonstrated by immunofluorescence and in vitro ligand blot interaction. Here we show that administration of slapn double-stranded RNA to S. litura larvae reduces its expression. As a consequence of the reduced expression, a corresponding decrease in the sensitivity of these larvae to Cry1C toxin was observed. The gene silencing was retained during the insect's moulting and development and transmitted to the subsequent generation albeit with a reduced effect. These results directly implicate larval midgut aminopeptidase N as receptor for Bacillus thuringiensis insecticidal proteins.  相似文献   

5.
The primary action of Cry toxins produced by Bacillus thuringiensis is to lyse midgut epithelial cells in their target insect by forming lytic pores. The toxin-receptor interaction is a complex process, involving multiple interactions with different receptor and carbohydrate molecules. It has been proposed that Cry1A toxins sequentially interact with a cadherin receptor, leading to the formation of a pre-pore oligomer structure, and that the oligomeric structure binds to glycosylphosphatidyl-inositol-anchored aminopeptidase-N (APN) receptor. The Cry1Ac toxin specifically recognizes the N-acetylgalactosamine (GalNAc) carbohydrate present in the APN receptor from Manduca sexta larvae. In this work, we show that the Cry1Ac pre-pore oligomer has a higher binding affinity with APN than the monomeric toxin. The effects of GalNAc binding on the toxin structure were studied in the monomeric Cry1Ac, in the soluble pre-pore oligomeric structure, and in its membrane inserted state by recording the fluorescence status of the tryptophan (W) residues. Our results indicate that the W residues of Cry1Ac have a different exposure to the solvent when compared with that of the closely related Cry1Ab toxin. GalNAc binding specifically affects the exposure of W545 in the pre-pore oligomer in contrast to the monomer where GalNAc binding did not affect the fluorescence of the toxin. These results indicate a subtle conformational change in the GalNAc binding pocket in the pre-pore oligomer that could explain the increased binding affinity of the Cry1Ac pre-pore to APN. Although our analysis did not reveal major structural changes in the pore-forming domain I upon GalNAc binding, it showed that sugar interaction enhanced membrane insertion of soluble pre-pore oligomeric structure. Therefore, the data presented here permits to propose a model in which the interaction of Cry1Ac pre-pore oligomer with APN receptor facilitates membrane insertion and pore formation.  相似文献   

6.
The Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N (APN) was analyzed, to better understand the molecular mechanism of susceptibility to the toxin and the development of resistance in insects. APN was digested with lysylendopeptidase and the ability of the resulting fragments to bind to Cry1Aa and 1Ac toxins was examined. The binding abilities of the two toxins to these fragments were different. The Cry1Aa toxin bound to the fragment containing 40-Asp to 313-Lys, suggesting that the Cry1Aa toxin-binding site is located in the region between 40-Asp and 313-Lys, while Cry1Ac toxin bound exclusively to mature APN. Next, recombinant APN of various lengths was expressed in Escherichia coli cells and its ability to bind to Cry1Aa toxin was examined. The results localized the Cry1Aa toxin binding to the region between 135-Ile and 198-Pro.  相似文献   

7.
8.
Cry toxins from Bacillus thuringiensis are used for insect control. Their primary action is to lyse midgut epithelial cells. In this review we will summarize recent findings on the Cry toxin-receptor interaction and the role of receptor recognition in their mode of action. Cry toxins interact sequentially with multiple receptors. In lepidopteran insects, Cry1A monomeric toxins interact with the first receptor and this interaction triggers oligomerization of the toxins. The oligomer then interacts with second receptor inducing insertion into membrane microdomains and larval death. In the case of mosquitocidal toxins, Cry and Cyt toxins play a part. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin resistance. Recently, it was proposed that Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a membrane-bound receptor for Cry toxin.  相似文献   

9.
Bacillus thuringiensis subsp. israelensis, which is used worldwide to control Aedes aegypti larvae, produces Cry11Aa and other toxins during sporulation. In this study, pull-down assays were performed using biotinylated Cry11Aa toxin and solubilized brush border membrane vesicles prepared from midguts of Aedes larvae. Three of the eluted proteins were identified as aminopeptidease N (APN), one of which was a 140 kDa protein, named AaeAPN1 (AAEL012778 in VectorBase). This protein localizes to the apical side of posterior midgut epithelial cells of larva. The full-length AaeAPN1 was cloned and expressed in Eschericia coli and in Sf21 cells. AaeAPN1 protein expressed in Sf21 cells was enzymatically active, had a GPI-anchor but did not bind Cry11Aa. A truncated AaeAPN1, however, binds Cry11Aa with high affinity, and also Cry11Ba but with lower affinity. BBMV but not Sf21 expressed AaeAPN1 can be detected by wheat germ agglutinin suggesting the native but Sf21 cell-expressed APN1 contains N-acetylglucosamine moieties.  相似文献   

10.
Bacillus thuringiensis insecticidal protein, Cry1Aa toxin, binds to a specific receptor in insect midguts and has insecticidal activity. Therefore, the structure of the receptor molecule is probably a key factor in determining the binding affinity of the toxin and insect susceptibility. The cDNA fragment (PX frg1) encoding the Cry1Aa toxin-binding region of an aminopeptidase N (APN) or an APN family protein from diamondback moth, Plutella xylostella midgut was cloned and sequenced. A comparison between the deduced amino acid sequence of PX frg1 and other insect APN sequences shows that Cry1Aa toxin binds to a highly conserved region of APN family protein. In this paper, we propose a model to explain the mechanism that causes B. thuringiensis evolutionary success and differing insect susceptibility to Cry1Aa toxin.  相似文献   

11.
Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.  相似文献   

12.
We previously identified a novel Heliothis virescens 110 kDa aminopeptidase N (APN) that binds Bacillus thuringiensis (Bt) Cry1Ac and Cry1Fa delta-endotoxins, and cloned an internal region of the 110 kDa APN gene (Banks et al., 2001). Here we describe the RACE-PCR cloning and sequence of a cDNA encoding 110 kDa APN. The 110 kDa APN gene was transiently co-expressed with green fluorescent protein (GFP) in Drosophila S2 cells using the pIZT expression vector. Enrichment of total membranes purified from S2 cells transfected with the 110 kDa APN gene had 3.3 fold increased APN enzymatic activity relative to enriched total membranes purified from S2 cells transfected with vector alone. Whereas the majority of S2 cells transfected with the 110 kDa APN gene bound rhodamine-labeled Cry1Ac toxin, no S2 cells transfected with vector alone bound rhodamine-labeled Cry1Ac toxin. This indicates that toxin binding to whole cells is APN mediated. However, flow cytometry and microscopy indicated that 110 kDa APN transfected S2 cells exposed to Cry1Ac or Cry1Fa toxin did not experience an increase in membrane permeability, indicating that APN transfected cells were resistant to toxin. This suggests while the H. virescens 110 kDa APN functions as a Bt toxin binding protein, it does not mediate cytotoxicity when expressed in S2 cells.  相似文献   

13.
Phage display is an in vitro method for selecting polypeptides with desired properties from a large collection of variants. The insecticidal Cry toxins produced by Bacillus thuringiensis are highly specific to different insects. Various proteins such as cadherin, aminopeptidase-N (APN) and alkaline phosphatase (ALP) have been characterized as potential Cry-receptors. We used phage display to characterize the Cry toxin-receptor interaction(s). By employing phage-libraries that display single-chain antibodies (scFv) from humans or from immunized rabbits with Cry1Ab toxin or random 12-residues peptides, we have identified the epitopes that mediate binding of lepidopteran Cry1Ab toxin with cadherin and APN receptors from Manduca sexta and the interaction of dipteran Cry11Aa toxin with the ALP receptor from Aedes aegypti. Finally we displayed in phages the Cry1Ac toxin and discuss the potential for selecting Cry variants with improved toxicity or different specificity.  相似文献   

14.
Zhang R  Hua G  Andacht TM  Adang MJ 《Biochemistry》2008,47(43):11263-11272
Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.  相似文献   

15.
Jurat-Fuentes JL  Adang MJ 《Biochemistry》2006,45(32):9688-9695
Genetic knockout of the BtR4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to resistance against Cry1Ac toxin from Bacillus thuringiensis. However, the functional Cry1Ac receptor role of this protein has not been established. We previously proposed HevCaLP as a shared binding site for B. thuringiensis (Bt) Cry1A and Cry1Fa toxins in the midgut epithelium of H. virescens larvae. Considering that Cry1Ac and Cry1Fa are coexpressed in second-generation transgenic cotton for enhanced control of Heliothine and Spodoptera species, our model suggests the possibility of evolution of cross resistance via alteration of HevCaLP. To test whether HevCaLP is a Cry1Ac and Cry1Fa receptor, HevCaLP was transiently expressed on the surface of Drosophila melanogaster Schneider 2 (S2) cells. Expressed HevCaLP bound [(125)I]Cry1A toxins under native (dot blot) and denaturing (ligand blot) conditions. Affinity pull-down assays demonstrated that Cry1Fa does not bind to HevCaLP expressed in S2 cells or in solubilized brush border membrane proteins. Using a fluorescence-based approach, we tested the ability of expressed HevCaLP to mediate toxicity of Cry1A and Cry1Fa toxins. Cry1A toxins killed S2 cells expressing HevCaLP, whereas Cry1Fa toxin did not. Our results demonstrate that HevCaLP is a functional Cry1A but not Cry1Fa receptor.  相似文献   

16.
刘慧  李博  牛林  邱林  王永 《生物安全学报》2018,27(4):255-259
【目的】Bt杀虫蛋白发挥杀虫活性的重要前提是Cry蛋白能够与昆虫中肠上皮细胞刷状缘膜囊(BBMVs)上的受体蛋白结合。在前期获得二化螟氨肽酶N1(Aminopeptidase N,APN1)基因全长序列的基础上,明确二化螟APN1多肽片段与Cry2Aa的结合能力。【方法】将二化螟APN1序列片段在大肠杆菌BL21(DE3)中表达,利用蛋白质单向电泳和ligand blotting技术分析二化螟APN1多肽片段与Cry2Aa的结合能力。【结果】重组载体可在表达菌株BL21(DE3)中表达一个约70 ku的蛋白,纯化后的多肽条带单一,纯度较好。Ligand blot分析结果显示,表达的二化螟APN1多肽片段可以与活化的Cry2Aa杀虫蛋白结合,且结合条带随着重组蛋白上样量的降低而减弱。【结论】APN1多肽片段可以与Cry2Aa结合,为阐明APN1基因的功能奠定基础,也为其他Bt蛋白的受体蛋白相关研究提供新的借鉴。  相似文献   

17.
Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S. frugiperda populations. To gain insights into the mechanisms of this Cry1AbMod-enhanced toxicity, we isolated the Cry1AbMod toxin binding proteins from S. frugiperda brush border membrane vesicles (BBMV), which were identified by pull-down assay and liquid chromatography-tandem mass spectrometry (LC–MS/MS). The LC–MS/MS results indicated that Cry1AbMod toxin could bind to four classes of aminopeptidase (N1, N3, N4 y N5) and actin, with the highest amino acid sequence coverage acquired for APN 1 and APN4. In addition to these proteins, we found other proteins not previously described as Cry toxin binding proteins. This is the first report that suggests the interaction between Cry1AbMod and APN in S. frugiperda.  相似文献   

18.
苏云金芽孢杆菌Bacillus thuringiensis生产的晶体毒素被广泛用作农林害虫的杀虫剂。鳞翅目昆虫受体蛋白是阐明其与晶体毒素相互作用的重要模式。文中纯化了苏云金芽孢杆菌的晶体毒素蛋白,质谱鉴定为Cry1Ac毒素,然后重组表达家蚕氨肽酶N (BmAPN6) 和类钙粘蛋白 (CaLP) 结合结构域。利用免疫共沉淀、Far-Western印迹和酶联免疫吸附试验,证明Cry1Ac毒素蛋白和BmAPN6之间的相互作用。在Sf9细胞中,对Cry1Ac毒素的细胞毒活性分析,表明BmAPN6参与Cry1Ac毒素诱导的细胞形态异常和裂解死亡。文中也利用相同的方法,对钙粘蛋白的3个结合位点CR7、CR11和CR12进行相互作用分析,结果表明3个重复结构域是CaLP的Cry1Ac结合位点。上述结果表明,BmAPN6和CaLP可作为Cry1Ac毒素致病的功能性受体,为进一步揭示晶体毒素的致病机制和基因编辑增强家蚕抗病性提供了研究靶标。  相似文献   

19.
Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C.  相似文献   

20.
Specificity for target insects of Bacillus thuringiensis insecticidal Cry toxins is largely determined by toxin affinity for insect midgut receptors. The mode of binding for one such toxin-receptor complex was investigated by extensive toxin mutagenesis, followed by real-time receptor binding analysis using an optical biosensor (BIAcore). Wild-type Cry1Ac, a three-domain, lepidopteran-specific toxin, bound purified gypsy moth (Lymantria dispar) aminopeptidase N (APN) biphasically. Site 1 displayed fast association and dissociation kinetics, while site 2 possessed slower kinetics, yet tighter affinity. We empirically determined that two Cry1Ac surface regions are involved in in vivo toxicity and APN binding. Mutations within domain III affected binding rates to APN site 1, whereas mutations in domain II affected binding rates to APN site 2. Furthermore, domain III contact is completely inhibited in the presence of N-acetylgalactosamine, indicating loss of domain III binding eliminates all APN binding. Based upon these observations, the following model is proposed. A cavity in lectin-like domain III initiates docking through recognition of an N-acetylgalactosamine moiety on L. dispar APN. Following primary docking, a higher affinity domain II binding mechanism occurs, which is critical for insecticidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号