首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This article describes a fully automated system for the on-line monitoring and closed-loop control of a fed-batch fermentation of recombinant Escherichia coli, and presents two case studies of its used in limiting production of unwanted byproducts such as acetic in fed-batch fermentations. The system had two components. The first components, on-line monitoring, comprised an aseptic sampling device, a microcentrifuge, and HPLC System. These instruments removed a Sample from a fermentor, spun it at high speed to separate solid and liquid components, and then automatically injected the supernatant onto an HPLC column for analysis. The second component consisted of control algorithms programmed using the LabView visual programming environment in a control computer that was linked via a remote components were linked so that results from the on-line HPLC were captured and used by the control algorithm was designed to demonstrate coarse feedback control to confirm the operability of the controller. The second case study showed how the system could be used in a more sophisticated feedings strategy providing fine control and limiting acetate concentration to a low level throughout the fermentation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
Experimental devices for stimulating productivity of lactic acid fermentation were installed and an electromagnetic flow-meter and a pneumatic diaphragm pump were employed to alleviate the fouling of the membrane and to improve the durability of membrane cell-recycle bioreactors (MCRBs). In this case, the continuous fermentation using a 5 L automatic fermentor lasted stably over 150 h, and could repeat periodically with simple intermittent on-line cleaning and sterilization of the membrane filtration system. Maximum value of OD620 of 98.7 was obtained, six times greater than that of the fed-batch fermentation. Meanwhile, maximum productivity of 31.5 g/(L h) was recorded, 10 times greater than that occurred in the fed-batch fermentation. Compared with conventional MCRBs, the MCRB system with a diaphragm pump and tangential flow-rate controlling was more stable and durable. The tangential velocity of membrane module could be monitored and controlled on-line, and the possibility of contamination due to hose rupture could be eliminated.  相似文献   

3.
The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h(-1), a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L . h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell . h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L . h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
This paper deals with the design of a feedback controller for fed-batch microbial conversion processes that forces the substrate concentration C(S) to a desired setpoint, starting from an arbitrary (initial) substrate concentration when non-monotonic growth kinetics apply. This problem is representative for a lot of industrial fermentation processes, with the baker's yeast fermentation as a well-known example. It is assumed that the specific growth rate mu is function of the substrate concentration only. A first approach exploits the availability of on-line measurements of both the substrate and biomass concentration. A second approach is merely based on on-line measurements of the biomass concentration, which provide an estimate for the specific growth rate. After a reformulation of the substrate concentration setpoint into a specific growth rate setpoint, it is demonstrated that the fed-batch process can still be stabilized around any desired operating point along the non-monotonic kinetics.  相似文献   

5.
Bacterial cellulose production by fed-batch fermentation in molasses medium   总被引:2,自引:0,他引:2  
Bae S  Shoda M 《Biotechnology progress》2004,20(5):1366-1371
Batch and fed-batch fermentations for bacterial cellulose (BC) production using molasses as a carbon source by Acetobacter xylinum BPR2001 were carried out in a jar fermentor. For improvement of BC production, molasses was subjected to H2SO4-heat treatment. The maximum BC concentration by this treated molasses increased 76%, and the specific growth rate increased 2-fold compared with that by untreated molasses. In batch fermentation, when the initial sugar concentrations of H2SO4-heat-treated molasses were varied from 20 to 70 g/L, the highest value of maximum BC concentration of 5.3 g/L was observed at 20 g/L. BC production in intermittent fed-batch (IFB) fermentation was conducted referring to the data in batch fermentation, and the highest BC production of 7.82 g/L was obtained when 0.2 L of molasses medium was added five times. When continuous fed-batch (CFB) fermentations were conducted, maximum BC concentration was obtained with a feeding rate of 6.3 g-sugar/h, which was derived from the optimal IFB experiment.  相似文献   

6.
Traditionally, fed-batch biochemical process optimization and control use complicated models and off-line optimizers with no on-line model adaptation and re-optimization. This work demonstrates the applicability, effectiveness, and economic potential, of a simple phenomenological model for modeling, and a novel optimizer for on-line re-optimization and control of an aerobic fed-batch fermentor.  相似文献   

7.
The implementation of adaptive control for a fed-batch culture in order to maximize the output of product based on a self-adjusting model is discussed in the present work. Optimization methods were applied to the generalized mathematical model of a fed-batch fermentation process to determine control algorithms that could be used for on-line process control. The efficiency of the proposed adaptive algorithms was investigated by simulating a model system. The model of amylotytic enzyme fermentation that was proposed by the authors was taken from a real process. Dynamic modelling has shown that the main problem of realization is connected with the on-line identification of the adaptive model's parameters. To avoid this problem, we have introduced special limitations on the parameters' time variations that increased the convergence of the identification algorithm. The results of the investigation have shown the efficiency of the proposed adaptive algorithms, and the results of this work should be investigated for real process control.  相似文献   

8.
研究了优化重组大肠杆菌产5-氨基乙酰丙酸(ALA)的条件,提高大肠杆菌发酵生产AL气的产量。在测定重组大肠杆菌GT48的生长曲线的基础上,确定诱导时间,优化摇瓶发酵条件。然后,进一步在5L发酵罐上进行间歇和流加发酵研究。摇瓶实验表明,细胞培养最佳初始pH为6.5,最佳诱导时间为稳定期前期,最佳接种量为2%,过高的葡萄糖浓度对细胞生长和产物合成均有一定的抑制作用。在5L发酵罐间歇发酵中,重组菌产ALA能力达到47.8mg/L。采用流加发酵可以进一步将产物产量提高到63.8mg/L。构建的过量表达自身的hemA基因的大肠杆菌具有较高的产ALA能力,通过发酵条件优化和采用流加发酵可以提高AL气产量。  相似文献   

9.
The objective of this article is to propose an algorithm for the on-line estimation of the specific growth rate in a batch or a fed-batch fermentation process. The algorithm shows the practical procedure for the estimation method utilizing the macroscopic balance and the extended Kalman filter. A number of studies of the on line estimation have been presented. However, there are few studies discussing about the selection of the observed variables and for the tuning of some parameters of the extended Kalman filter, such as covariance matrix and initial values of the state.The beginning of this article is devoted to explain the selection of the observed variable. This information is very important in terms of the practical know-how for using technique. It is discovered that the condition number is a practically useful and valid criterion for number is a practically useful and valid criterion for choosing the variable to be observed.Next, when the extended Kalman filter in applied to the online estimation of the specific growth rate, which is directly unmeasurable, criteria for judging the validity of the estimated value from the observed data are proposed. Based on the proposed criterial, the system equation of the specific growth rate is selected and initial value of the state variable and covariance matrix of the system noises are adjusted. From many experiments, it is certified that the specific growth rate in the batch or fed -batch fermentation can be estimated accurately by means of the algorithm proposed here. In these experiments, that is, when the cell concentration is measured directly, the extended Kalman filter using the convariance matrix with a constant element can estimate more accurately values of the specific growth rate than the adaptive extended Kalman filter does.  相似文献   

10.
为了评价虾青素高产菌株-法夫酵母JMU-MVP14的生产性能及建立虾青素高产发酵技术,通过测定糖、生物量、虾青素产量、总类胡萝卜素产量等发酵参数,用摇瓶试验对比了法夫酵母JMU-MVP14和出发菌株的差异,用7 L罐试验对比了pH值调控方式及补料培养基成分对发酵的影响,用1 m3罐试验评估了法夫酵母JMU-MVP14高密度发酵虾青素的产量水平。摇瓶发酵结果表明,法夫酵母JMU-MVP14虾青素及总类胡萝卜素的细胞产率分别达到6.01 mg/g及10.38 mg/g;7 L罐分批发酵试验结果表明,自动流加调  相似文献   

11.
The total concentration of dissolved carbon dioxide in fermentation broths is one to two orders of magnitude greater than that of oxygen for pH > 6.5. The rate of change in this total concentration can be sufficiently large to produce a discrepancy between the carbon dioxide transfer rate (CTR) across the gas-liquid interface, available from gas analyses, and the carbon dioxide evolution rate (CER) of biomass in the fermentor. The CER is the variable of most interest to fermentation technologists but cannot be measured directly. The CTR is commonly used to yield the measured respiratory quotient (called here the TQ, or transfer quotient). Evaluation of the real underlying respiratory quotient (RQ), however, requiures the unmeasureable CER. Equations defining the problem are presented and are found to accurately predict the discrepancy between the TQ and the RQ in fed-batch fermentations of Escherichia coli. During the exponential growth phase, the TQ is less than the RQ. A changing pH can cause the TQ to be bigger or smaller than the RQ, while pH fluctuations associated with on-off pH controller action make the CTR and hence the TQ noisy. The RQ is estimated on-line during an E. coli fermentation and is shown to be constant during the fermentation, even though the TQ varies greatly. (c) 1992 John Wiley & Sons, Inc.  相似文献   

12.
The efficacy of acid production rate (APR) controlled operations of a continuous fermentor supporting the growth of a methylotroph, L3, was experimentally examined. Direct digital control of pH at a constant value allowed for on-line estimation of APR during the fermentation. Two types of APR controlled operations were studied. In the first type of operation, the APR was controlled at a constant value according to a predetermined program by manipulating the feed flow rate to the fermentor. Such an operation effectively stabilized the cell mass productivity of a continuous fermentor subjected to disturbances in the feed nutrient concentration. It resulted in a near complete conversion of methanol to yield a cell mass product with very low amounts of unutilized methanol at both steady state and transient fermentation situations. In the second type of operation, the feed flow rate was manipulated to optimize the steady state value of APR during the fermentation. This method shows promise for on-line steady state optimization of cell mass productivity in a continuous fermentor.  相似文献   

13.
温度对大肠杆菌L-色氨酸发酵过程的影响   总被引:4,自引:0,他引:4  
目的:研究变温控制对大肠杆菌TRTH L-色氨酸补料分批发酵过程中生物量、色氨酸产量、比生长速率及质粒稳定性的影响。方法:利用5L自控发酵罐对L-色氨酸补料分批发酵过程进行温度控制,对不同温度下相关参数进行分析比较,确定优化的温度控制方案。结果:以30-36%顺序升温的工艺进行发酵得到理想结果,与单一温度控制策略相比,L-色氨酸产量提高了15.4%;色氨酸的比合成速率提高了21.6%;质粒稳定性增加,未出现质粒丢失现象,质粒拷贝数保持在恒定水平。结论:温度对大肠杆菌L-色氨酸发酵有重要影响。  相似文献   

14.
A nitrate control system has been devised for the maintenance of stable nitrate concentrations throughout fed-batch fermentations of Corynebacterium glutamicum. The feedback control system was based on the use of a nitrate-ion-selective electrode to directly monitor the nitrate levels in the fermentor and an automatic controller to activate a nitrate feed pump. The electrode which was used for controlling the nitrate level was stable through-out the fermentation period. The apparent maximum specific growth rate, biomass production, protein production, biomass yields on glucose and nitrate, and amino acid production were all optimal at approximately 50mM nitrate.  相似文献   

15.
The economics of yeast production depend heavily upon the cellular yield coefficient on the carbon source and the volumetric productivity of the process. The application of an on-line computer to maximize these two terms during the fermentation requires a continuous method of measuring cell density and growth rate. Unfortunately, a direct sensor for biomass concentration suitable for use in industrial fermentations is not available. Material balancing, with the aid of on-line computer monitoring, offers an indirect method of measurement. Laboratory results from baker's yeast production in a 14-liter fermentor (with a PDP-11/10 computer for on-line analyses) show this indirect measurement technique to be a viable alternative. From the oxygen uptake and carbon dioxide production data, gas flow rate, and ammonia addition rate, the cell density during the fermentation has been estimated and found to compare well with actual fermentation data.  相似文献   

16.
In this study, we utilized a unique strategy for fed-batch fermentation using ethanol-tolerant Saccharomyces cerevisiae to achieve a high-level of ethanol production that could be practically applied on an industrial scale. During this study, the aeration rate was controlled at 0.0, 0.13, 0.33, and 0.8 vvm to determine the optimal aeration conditions for the production of ethanol. Additionally, non-sterile glucose powder was fed during fed-batch ethanol fermentation and corn-steep liquor (CSL) in the medium was used as an organic N-source. When aeration was conducted, the ethanol production and productivity were superior to that when aeration was not conducted. Specifically, the maximum ethanol production reached approximately 160 g/L, when the fermentor was aerated at 0.13 vvm. These findings indicate that the use of a much less expensive C-source may enable the fermentation process to be directed towards the improvement of overall ethanol production and productivity in fermentors that are aerated at 0.13 vvm. Furthermore, if a repeated fed-batch process in which the withdrawal and fill is conducted prior to 36 h can be employed, aeration at a rate of 0.33 and/or 0.8 vvm may improve the overall ethanol productivity  相似文献   

17.
An adaptive state estimator for detecting contaminants in bioreactors   总被引:2,自引:0,他引:2  
An algorithm is presented for detecting the appearance of contaminants during batch or fed-batch fermentations, using only presently available on-line measurements. Its adaptive nature enables it to rely on almost no prior knowledge of the real process. The necessary on-line measurements are total biomass and its production rate; it is also shown how a physical variable such as oxygen uptake can be used alone instead. The algorithm's properties are studied theoretically and through simulations. These were confirmed by on-line experimental results, obtained with a Yeast culture, both pure and contaminated by a Bacteria. The algorithm does not detect contaminants when none are there, and it also provides a convergent estimate of a pure culture's specific growth rate. Contaminated cultures are recognized by the algorithm, and this detection can be made more or less conservative. After detection, the various estimates may diverge, due to general observability difficulties, though this divergence can itself be monitored. Moreover, the algorithm is easy to tune and its qualitative behavior is quite insensitive to its adjustable parameters. A practical criterion and scheme for implementation are proposed. The generality of the approach, which far exceeds the experimental system used, is finally discussed.  相似文献   

18.
pH及流加葡萄糖对酵母分批发酵生产谷胱甘肽的影响   总被引:1,自引:0,他引:1  
在5 L的发酵罐中研究了pH及流加葡萄糖对酵母分批发酵生产谷胱甘肽(GSH)的影响。实验考察了不同浓度的流加葡萄糖和不同的恒pH值的分批发酵对于酵母生产GSH产量的变化。实验结果表明,当pH值控制为5.0,流加葡萄糖流速为5g.L-1.h-1,连续流加30 h,可使GSH产量最高,与之前未流加葡萄糖和控制pH相比,其产量提高了6倍。  相似文献   

19.
Summary Three Lactococcus strains (Lactococcus ssp. lactis var. diacetylactis, Lactococcus ssp. lactis cremoris and Lactococcus ssp. lactis var. lactis) isolated from the Tunisian lben were grown at constant pH on CSL medium in stirred fermentors for lactic starters production. The agitation required to homogenate alkali used to pH control should be low because it affects the Lactococcus growth. Scale up from 20-liter fermentor to 400-liter fermentor was carried out at constant impeller tip speed below 150 cm sу. The CSL supplementation and fed-batch with glucose increased the yield in the upper 1010 cfu/ml. The consumed glucose during fermentation was converted into lactic acid and cell. Before fed-batch, the maximum specific growth rate of Lactococcus ssp. lactis var. diacetylactis was around 1 hу and the number of cells increased 20 to 40 times according to inoculum size. After fed-batch, the glucose consumption rate remains constant but specific growth rate decreased and number of cell trebled only.  相似文献   

20.
The determination of an optimum feeding profile of a fed-batch fermentation requires the solution of a singular optimum control problem, which is often complicated by changes in the process kinetics during the fermentation. The procedure of optimization may be sufficiently simple, if the feeding part of fermentation is carried out in the quasi-steady state. In this work an algorithm for operating a fed-batch fermentation using mentioned regime is offered. The algorithm supposes a periodical correction of the feeding strategy. Applying to fed-batch lysine fermentation demonstrate efficacy of this algorithm over frequently used strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号