首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxytocin (OT) and arginine-8-vasopressin (AVP) were measured by radioimmunoassay in micropunched hypothalamic neurosecretory nuclei of estrous cycling female Sprague-Dawley rats. In the paraventricular nucleus (PVN): the concentration (pg/microgram protein) of OT was significantly higher in rats in diestrus than during proestrus, estrus, or metestrus, while the concentration during metestrus was significantly greater than in proestrus and estrus; the concentration of AVP was significantly lower in animals in estrus than during the other three stages; because the paraventricular OT levels dropped before proestrus, the AVP/OT ratio was significantly greater in animals in proestrus than in diestrus, metestrus, and estrus. In the supraoptic nucleus (SON) a similar trend was noted: the concentration of OT was highest during diestrus, and AVP was lowest during estrus, though neither was significantly different from other stages. Because the OT and AVP cycles in the SON were asynchronous, the ratio of AVP to OT was significantly higher in proestrus than in metestrus or diestrus and significantly greater in estrus than during diestrus. In contrast to these two areas, peptide concentrations did not vary significantly across the estrous cycle in other sites of nonapeptide synthesis, i.e. the anterior commissural nucleus (ACN) and the suprachiasmatic nuclei (SCN).  相似文献   

2.
Pituitary levels of oxytocin and vasopressin were maximal on the morning of proestrus, declined during estrus, and were lowest on metestrus in cycling female rats. Norepinephrine levels in the paraventricular nucleus were decreased on proestrus and estrus when compared with metestrus-diestrus. Norepinephrine did not vary in the supraoptic nucleus. Administration of estradiol benzoate to ovariectomized rats elevated oxytocin in the pituitary 54 hr later. This elevation was not affected by a subsequent injection of estrogen or progesterone. Estrogen priming did not affect vasopressin levels in the pituitary, but a second injection of estrogen or of progesterone 48 hr later increased vasopressin in the pituitary when measured 6 hr after the second injection. Vasopressin was decreased 30 hr after a second injection of estrogen. The ovarian hormone treatments that elevated pituitary vasopressin decreased steady state levels of norepinephrine in the paraventricular nucleus and reduced the depletion of norepinephrine after administration of the catecholamine synthesis inhibitor α-methyltyrosine, suggesting a decrease in turnover. Ovarian hormones did not affect norepinephrine in the supraoptic nucleus. The present results suggest a role for posterior pituitary hormones in reproductive processes and a role for noradrenergic mechanisms in the paraventricular nucleus in mediating the effects of ovarian steroids on pituitary vasopressin.  相似文献   

3.
Circulating levels and tissue content of alpha-MSH were measured on the morning of various days of the estrous cycle, and on the afternoon of proestrus in freely moving conscious rats. No surges of alpha-MSH were detected by RIA in the morning of various days of the cycle. The neurointermediate lobe content of alpha-MSH was slightly elevated on diestrus 1 as compared to the levels on diestrus 11 and proestrus but not to estrous levels. No changes in alpha-MSH content were detected in the anterior pituitary, the median eminence, mediobasal hypothalamus and the preoptic area at various stages of the estrous cycle. Plasma alpha-MSH levels were slightly elevated at 1500 hr of proestrus which was followed three hours later by a decline. This profile of plasma alpha-MSH on the afternoon of proestrus was reproduced by the SC administration of estradiol benzoate to long-term ovariectomized rats. These data suggest that, contrary to the results obtained by bioassay of alpha-MSH no surges of alpha-MSH occur on any day of the cycle, although a slight elevation on the afternoon of proestrus was detected. The altered pattern of release of this peptide on the afternoon of proestrus may be induced by estrogen.  相似文献   

4.
The topographical changes of the luminal surface of the endometrium of immature and ovariectomized rats treated with estrogen, antagonists to estrogen, and progesterone. and during various stages of the estrous cycle and in pregnancy were examined by scanning electron microscopy. Massive increases in numbers and length of endometrial cell microvilli were observed at estrus, after injection of estradiol-17beta, diethylstilbestrol, estrogen plus progesterone. or the inhibitor C1628 to immature and ovariectomized rats. Withdrawal of the estrogen stimulus results in diminution of microvilli, producing a state identical to diestrus, during pregnancy, and after injection of progesterone, The estrogen antagonist appears to have both estrogenic and progestogenic properties, stimulating endometrial cell hypertrophy, secretion of protein, and production of numerous apical microvilli.  相似文献   

5.
In women, sympathoexcitation during static handgrip exercise is reduced during the follicular phase of the ovarian cycle compared with the menstrual phase. Previous animal studies have demonstrated that estrogen modulates the exercise pressor reflex, a sympathoexcitatory mechanism originating in contracting skeletal muscle. The present study was conducted in female rats to determine whether skeletal muscle contraction-evoked reflex sympathoexcitation fluctuates with the estrous cycle. The estrous cycle was judged by vaginal smear. Plasma concentrations of estrogen were significantly (P < 0.05) higher in rats during the proestrus phase of the estrus cycle than those during the diestrus phase. In decerebrate rats, either electrically induced 30-s continuous static contraction of the hindlimb muscle or 30-s passive stretch of Achilles tendon (a maneuver that selectively stimulates mechanically sensitive muscle afferents) evoked less renal sympathoexcitatory and pressor responses in the proestrus animals than in the diestrus animals. Renal sympathoexcitatory response to 1-min intermittent (1- to 4-s stimulation to relaxation) bouts of static contraction was also significantly less in the proestrus rats than that in the diestrus rats. In ovariectomized female rats, 17β-estradiol applied into a well covering the dorsal surface of the lumbar spinal cord significantly reduced skeletal muscle contraction-evoked responses. These observations demonstrate that the exercise pressor reflex function and its mechanical component fluctuate with the estrous cycle in rats. Estrogen may cause these fluctuations through its attenuating effects on the spinal component of the reflex arc.  相似文献   

6.
The mechanisms involved in the control of precocious sexual receptivity were studied in 4-day cyclic female Wistar rats injected with 10 μg estradiol benzoate (EB) and caged with a male during the night from diestrus II to proestrus. Early mating frequencies were compared in intact females, in animals ovariectomized on the morning of diestrus I, in adrenalectomized and in adrenalectomized-ovariectomized females. No change in early sexual receptivity occurred either in ovariectomized, or in adrenalectomized animals. On the contrary, a significant decrease of precocious mating frequencies was noted in adrenalectomized-ovariectomized females. The role played by the ovary in the control of precocious receptivity was supposed to be due to the secretion of progesterone which has been evidenced on the late afternoon of diestrus II in estrogen treated females.Concerning the mechanisms by which the adrenals may compensate for the ovaries in the control of early sexual receptivity in estrogen-primed females it was observed that notwithstanding an inhibitory action exerted by EB on the adrenal progesterone secretion, a low rate of progesterone was maintained in the peripheral plasma which was compatible with early mating in ovariectomized animals.  相似文献   

7.
l-Prolyl-l-leucyl-glycinamide is rapidly hydrolyzed by hypothalamic, hypophyseal and cortical homogenates from male or female rats. The peptidase activity is higher in the pituitary followed in decreasing order by the hypothalamus and the cerebral cortex. It is mostly localized in the supernatant fraction of a 100,000 g centrifugation and is inhibited by bacitracin.Tissues from female rats are half as active as those from male rats and show variations during the estrous cycle, with very low PLG metabolism at diestrus 1 in pituitary and hypothalamus. In contrast, the cerebral cortex at proestrus and estrus has significant lower hydrolyzing activity than at diestrus. No change of the peptidase activity is observed in tissues from ovariectomized animals after treatment with estrogen or progesterone.The results obtained suggest the existence of a correlation between peptidasic activity and melanotropin secretion.  相似文献   

8.
Summary The effect of water deprivation or estrogen treatment on the oxytocin content of rat hypothalamic cells was examined using a quantitative immunohistological technique. Oxytocin-containing cells were visualized using the immunoperoxidase technique of Sternberger and a primary antiserum directed against oxytocin. The optical density of the darkest 3.2 m diameter spot in the cytoplasm of a cell was used as a measure of the oxytocin content of that cell. Water deprivation produced a significant decrease in anti-oxytocin staining in the anterior commissural nucleus of males and females. There was a similar decrease in the paraventricular nucleus of males, but not in the paraventricular nucleus of females or the supraoptic nucleus of either males or females. Estrogen treatment of ovariectomized female rats produced a fall in anti-oxytocin staining in the anterior commissural, but not paraventricular or supraoptic nuclei.  相似文献   

9.
This study examined the of LH and prolactin in the control of corpus luteum function during 4-day cycles in the rat. Bromocriptine (BRC) treatment was performed on proestrus or/and estrus morning that means before or after the preovulatory release of LH. This caused complete blood prolactin depression from the time of injection until diestrus 1 afternoon. This decrease in blood prolactin concentration was associated with a rise in the tonic level of LH secretion in those females which received BRC as soon as on proestrus. We first observed that injection on the morning of proestrus of doses of BRC capable of blunting prolactin secretion on proestrus afternoon did not significantly impair the preovulatory release of LH and did not prevent ovulation occurring during the following night. The life span of the corpora lutea edified from ovarian follicles rupturing before or under BRC administration did not exceed that of those formed under physiological circumstances since 4-day cycles culminating in ovulation constantly took place in all the treated animals whatever the time of BRC injection. To determine the pattern of luteal activity in the absence of prolactin secretion, we measured blood progesterone concentration from estrus until late diestrus in female rats injected with BRC on proestrus and/or estrus at 1100 h. The initiation of the function of corpus luteum on estrus and the achievement of its full activity on diestrus 1 did not appear to be affected by BRC. By contrast the level of blood progesterone declined more rapidly on the morning of diestrus 2 in BRC-treated than in control females. The capacity for autonomous progesterone secretion by corpus luteum of the cycle was discussed in the light of previous and present observations.  相似文献   

10.
Progesterone secretion remained significantly higher during diestrus in the 5-day cyclic rat than in the 4-day cyclic animal. Injection of a sufficient amount of antiprogesterone serum (APS) at 2300 h on metestrus in a 5-day cycle advances ovulation and completion of the cycle by 1 day in the majority of animals (75 and 80%, respectively). Progesterone (250 micrograms) administered with APS eliminated the effect of the antiserum. Within 2 h after administration of APS, levels of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) elevated significantly, while a significant elevation of plasma estradiol above the control value followed as late as 36 h after the treatment. None of the 5-day cyclic rats treated with APS showed ovulatory increases of FSH and LH at 1700 h on the second day of diestrus, although 3 of the 4 animals receiving the same treatment ovulated by 1100 h on the following day. The onset of ovulatory release of gonadotropins might have been delayed for several hours in these animals. These results indicate that recurrence of the 5-day cycle is due to an elevated progesterone secretion on the morning of diestrus, and suggest that a prolongation of luteal progesterone secretion in an estrous cycle suppresses gonadotropin secretion. Rather than directly blocking the estrogen triggering of ovulatory LH surge, the prolonged secretion of luteal progesterone may delay the estrogen secretion itself, which decreases the threshold of the neural and/or hypophyseal structures for ovulatory LH release.  相似文献   

11.
The ovarian steroids, estrogen and progesterone, regulate cellular and molecular changes which occur in the uterus during the estrous cycle. Cycles of protein synthesis, cell proliferation and differentiation, and cell death are the direct results of changes in hormone concentration. To explore the possibility that cytokines, which stimulate proliferation and differentiation of numerous types of cells, might be associated with those cyclic changes, the production of IL-1, IL-6, and TNF alpha was examined in the mouse uterus. Cytokine mRNA expression, bioactivity, and immunoreactivity were quantitated during the estrous cycle, following ovariectomy and exposure of ovariectomized mice to estrogen and progesterone. IL-1, IL-6, and TNF alpha mRNA was detected, and mRNA levels for each of the cytokines varied with the stage of the cycle. Cytokine bioactivity was expressed throughout the cycle, but levels of each cytokine were highest during proestrus and/or estrus. Immunoreactivity paralleled bioactivity. Uterus from ovariectomized mice contained little or no cytokine activity, and systemic administration of estrogen or progesterone resulted in the induction of IL-1 alpha and IL-1 beta mRNA expression. Significant amounts of IL-6 and TNF alpha mRNA appeared only following the exposure of ovariectomized mice to estrogen plus progesterone. Cytokine bioactivity and immunoreactivity also appeared following the administration of estrogen and/or progesterone. The highest activity levels for each cytokine were observed following the injection of estrogen plus progesterone. Cyclic expression of IL-1, IL-6, and TNF alpha in the uterus and their apparent regulation by estrogen and progesterone raise the possibility that cytokines and factors which are induced by cytokines are part of the regulatory process which is induced by ovarian hormones in the uterus of reproductive age females.  相似文献   

12.
We demonstrate the presence of complement factor B (Bf) and complement C3 in uterine luminal fluid collected from estrogen-stimulated immature and adult female mice. We examined the synthesis and secretion of these two proteins in mouse endometrium at various stages of the natural estrous cycle and during the pregnancy period. The mRNA levels of these two proteins increased markedly in proestrus and estrus and declined sharply in metestrus to an undetectable level. The Bf mRNA remained undetectable, whereas a readily detectable C3 mRNA level reappeared, in diestrus. Meanwhile, these two proteins were immunolocalized to the apical cytoplasm of glandular and luminal epithelial cells of the endometrium during the estrous cycle. Administration of an estrogenic steroid to immature or ovariectomized adult mice markedly stimulated the expression of Bf, C3, and their RNA messages in the endometrium, whereas injection of progesterone alone to ovariectomized animals did not stimulate their expression. Expression of C3 was remarkably enhanced, whereas that of Bf changed only slightly, after injection of combined estrogen and progesterone to ovariectomized animals. In pregnant mice (Day [D] 1 = day of vaginal plug), Bf mRNA was at a high level on D1 and D2, dropped to an almost undetectable level from D3 to D8, and then increased to a low level thereafter until delivery. The C3 mRNA was at a high level on D1, dropped on D2 to an almost undetectable level from D3 to D9, increased to a very high level from D10 to D18, and then declined sharply before delivery. Immunohistochemical patterns of both proteins in the endometrium during preimplantation were positively correlated with changes in their mRNA levels.  相似文献   

13.
Quantitative changes in ovarian inhibin/activin subunit and follistatin mRNAs during the rat estrous cycle were examined by ribonuclease protection assay using digoxygenin-labeled RNA probes. Levels of ovarian inhibin alpha subunit mRNA remained low throughout estrus, metestrus, and diestrus; abruptly increased on the morning of proestrus; then rapidly decreased when the primary gonadotropin surge occurred. A similar changing pattern was observed in inhibin/activin beta(A) subunit mRNA. On the other hand, inhibin/activin beta(B) subunit mRNA showed a different changing pattern. Levels of beta(B) subunit mRNA remained constant during metestrus and diestrus, abruptly decreased on the afternoon of proestrus, then quickly recovered from the nadir by 1100 h on estrus. Throughout the rat estrous cycle, especially during the periovulatory period, alpha subunit mRNA levels were considerably higher than beta(A) and beta(B) subunit mRNA levels. In addition, changes in plasma concentrations of inhibin A and inhibin B were very similar to that in ovarian beta(A) and beta(B) subunit mRNA levels, respectively, with several-hour delays. These results suggest that levels of beta subunit mRNAs restrict secretion of dimeric inhibins. Levels of follistatin mRNA remained low from the midnight of metestrus to the midnight of diestrus, then increased until initiation of the primary gonadotropin surge. Thereafter, follistatin mRNA decreased, reached the nadir at 0200 h on estrus, then increased abruptly at 1100 h on estrus. Afterward, follistatin mRNA levels remained high until the morning of metestrus. The changing pattern of ovarian follistatin mRNA was similar to, and preceded, the changes in plasma concentrations of progesterone, suggesting that ovarian follistatin may modulate progesterone secretion during the rat estrous cycle.  相似文献   

14.
The aim of this study was to describe the presence of estrogen receptor-α (ERα) in several vaginal histological compartments in healthy adult bitches throughout three estrous cycle stages (proestrus, estrus, and early diestrus) and to relate ERα presence with serum progesterone and estradiol-17β concentrations. For this purpose, serial blood samples and vaginal biopsies were taken from five bitches every 48 hours, starting at the clinical onset of proestrus, marked by the beginning of serosanguineous vaginal secretion. Serum progesterone and estradiol-17β concentrations were determined by RIA, whereas detection of steroid receptors was carried out through immunohistochemistry. Subjective image analysis was conducted by two independent observers in the following histological compartments: superficial, intermediate, and deep epithelia and superficial (loose) and deep (dense) stroma (connective tissue). Nuclear ERα immunoreactivity was detected in every histological compartment and estrous cycle stage studied. ERα expression varied among histological compartments and during stages of the cycle. Receptor expression was associated with estradiol-17β and progesterone serum profiles. Most relevant cyclic changes were detected in the superficial and deep epithelia and in the dense connective tissue. The highest ERα expression was detected during diestrus, although each compartment had a different pattern throughout the other cycle stages. Thus, vaginal ERα expression in the bitch varied throughout proestrus, estrus, and early diestrus according to the histological compartment involved.  相似文献   

15.
Central oxytocin receptors (OTR) may be involved in adaptations of the brain oxytocin (OT) system during gestation, which are critical for systemic release of OT during parturition and lactation. We used quantitative autoradiography to determine changes in OTR binding in numerous brain sites during the course of gestation in the rat. Furthermore, to evaluate the importance of ovarian steroids in mediating pregnancy-related changes in OTR binding, we measured binding in ovariectomized animals treated with progesterone and/or estrogen, and in pregnant animals treated with exogenous progesterone during late gestation. We found that OTR binding was significantly increased in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) by midgestation (day 15) compared with control. In addition, there was a further significant increase in OTR binding in these nuclei by late gestation (day 20). The bed nucleus of the stria terminalis (BNST) and the medial preoptic area (MPOA) also showed significant gestation-associated increases in OTR binding, which were similar during mid- and late pregnancy. Treatment with exogenous progesterone throughout pregnancy did not alter the increase in OTR binding characteristic of late gestation in any of these brain sites. Finally, estrogen treatment in ovariectomized animals resulted in increased OTR binding in the SON, BNST, and MPOA, but not the PVN. These data demonstrate that OTR binding in the hypothalamus is increased during mid- and late-gestation, compared with ovariectomized control animals, which may be mediated by increased estradiol.  相似文献   

16.
Striatal D-2 dopamine (DA) antagonist and agonist binding sites were measured during the rat estrous cycle and compared to ovariectomized (OVX) rats. Dopaminergic D-2 antagonist binding sites were constant during the estrous cycle while agonist binding sites show a rapid and significant decrease of the ratio of high to low D-2 agonist binding sites from proestrus AM (PAM) to diestrus 1 (D1) and return to OVX value in diestrus 2 (DII). Thus, physiological fluctuations of hormones as occur during the estrous cycle can modulate extrahypothalamic biogenic amine activity, namely striatal DA systems which are not involved in the control of hormone secretion.  相似文献   

17.
Ovarian progesterone secretion during the diestrus stage of the estrous cycle is produced by luteal cells derived from granulosa and thecal cells after the differentiation process that follows ovulation. Our results show that blockade of the preovulatory rise of ovarian ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, by treatment with the specific inhibitor alpha-difluoromethylornithine (DFMO) leads to a significant decrease in the ovarian progesterone content and a dramatic fall in the plasma levels of this hormone during the following diestrus. The same inhibition was produced in spite of the fact that both luteinizing and follicle stimulating hormones were given concomitantly with DFMO. On the other hand, the acute rise in the plasma progesterone levels observed after administration of human chorionic gonadotropin to mice at different periods of the estrous cycle was not affected by DFMO administration. Our results indicate that although elevated levels of ODC are not required for acute ovarian steroidogenesis, the preovulatory peak of ovarian ODC activity observed in the evening of proestrus may be critical for the establishment of a constitutive steroidogenic pathway and progesterone secretion by the corpus luteum during the diestrus stage of the murine estrous cycle.  相似文献   

18.
为研究小熊猫繁殖周期血清雌二醇、孕酮含量变化规律,采用化学发光免疫分析法连续16 次测定了2只成体雌性小熊猫血清雌二醇和孕酮含量变化,历经发情间期、发情期和两次妊娠期;连续9次测定了7只小熊猫妊娠期的孕酮含量变化。结果:(1)发情间期,小熊猫血清雌二醇的水平一直维持在低水平(基础水平),进入发情前期,血清雌二醇水平明显升高,在发情期一直维持高水平,配种后迅速降至基础水平; (2)小熊猫血清孕酮含量在发情间期和发情期均维持在较低水平,直至发情期过后才出现升高,在妊娠期一直维持高水平,峰值出现在5 月;(3)发情的小熊猫不论妊娠与否,在妊娠期内血清孕酮含量均维持在高水平。研究表明:小熊猫血清雌二醇、孕酮含量变化能直接反映其繁殖规律,雌二醇对启动雌性小熊猫季节性繁殖起重要作用;在妊娠期内小熊猫血清孕酮含量升高不能作为判断小熊猫妊娠的标准;雌性小熊猫在妊娠期有假孕现象。  相似文献   

19.
Summary The location, cytology and projections of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig were investigated using specific antisera against vasopressin, oxytocin or neurophysin in the unlabeled antibody enzyme immunoperoxidase method. Light microscopic examination of the neurons of the supraoptic and paraventricular nuclei shows that hormone is transported not only in axons, but also in processes having the characteristics of dendrites. Neurons were found to contain only vasopressin or oxytocin; all neurons containing neurophysin appear to contain either vasopressin or oxytocin. In the neural lobe, vasopressin and oxytocin terminals are intermingled. In the median eminence, vasopressin and oxytocin fibers are intermingled in the internal zone. In a caudal portion of the median eminence, a number of vasopressin and neurophysin (but few oxytocin) axons enter the external zone from the internal zone, and surround portal capillaries. In the supraoptic nucleus, vasopressin neurons outnumber oxytocin neurons with a ratio of at least 5:1. The paraventricular nucleus is separated into two distinct groups of neurons, a lateral group consisting of only vasopressin neurons, and a medial group consisting of only oxytocin neurons. In addition to axons passing to the neurohypophysis, a number of axons appear to interconnect the supraoptic and paraventricular nuclei.Supported by the Deutsche Forschungsgemeinschaft (SFB 51, C/21 and C/27), (We 608/3)Acknowledgements. The authors are greatly indebted to Mmes. R. Köpp-Eckmann, B. Reijerman, A. Scheiber, I. Wild and Mr. U. Schrell for technical assistance, to Mmes. P. Campbell and U. Wolf for editorial assistance, and to Dr. R.R. Dries and Ferring Pharmaceuticals, Kiel, for the generous provision of high quality peptides  相似文献   

20.
The hypothalamic supraoptic and paraventricular nuclei consist of oxytocin and arginine vasopressin synthesizing neurons that send projections to the neurohypophysis. A growing body of evidence in adult animals and young animals at near term confirmed the structure and function in the vasopressinergic and oxytocinergic network. However, whether those distinctive neural networks are formed before near term is largely unknown. This study determined the special patterns in location and distribution of oxytocin- and vasopressin-neurons in the paraventricular and supraoptic nuclei from preterm to term in the ovine fetuses. The results showed that oxytocin- and vasopressin-neurons were present in both nuclei at the three gestational time periods (preterm, near term, and term). In the paraventricular nuclei, vasopressin-cells concentrated mainly in the core of the middle magnocellular paraventricular nuclei, and oxytocin-cells were scattered surrounding the core. In the supraoptic nuclei, vasopressin-cells mostly located in the ventral part, and oxytocin-cells in the dorsal part. The data demonstrated that the special distributed patterns of vasopressin- and oxytocin-neuron network have formed in those two nuclei at least from preterm. Intracerebroventricular injection of angiotensin II significantly increased fetal plasma oxytocin and vasopressin levels at preterm, which was associated with an increase of oxytocin- and vasopressin-neuron activity marked with c-fos expression. The data provided new evidence for the structural and functional development of the oxytocin- and vasopressin-network before birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号