首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultivation characteristics of fruit-body (synnema) formation ofIsaria japonica were examined using liquid and solid media in order to produce fruit-bodies on a large scale. Mycelia grew well at 18–28°C on PDA medium with an initial pH of 7.0. The formation of fruit-bodies ofI. japonica was induced by lowering temperature to below 20°C in PD liquid medium. In sawdust-rice bran basal medium mixed with pupal powder prepared from silkworms (Bombyx mori), the fresh weight of fruit-bodies increased with increasing content of pupal powder. The highest yields of fruit-bodies were obtained in carbon-rich barley grain medium supplemented with pupal powder. The fruit-bodies grown under CO2 concentrations of 1,000 μl/L had coral-like, many-branched synnemata with numerous conidiospores, whereas those formed under high concentrations (9,000 μl/L) of CO2 had unbranched and longer synnemata. High concentrations of CO2 remarkably inhibited conidiospore formation on synnemata. Continuous high-intensity illumination at 2.93 W·m−2 inhibited the elongation of synnemata, and low-intensity illumination at 0.088 W·m−2 slightly inhibited the branching of synnemata. Fruit-bodies were produced on the pupa metamorphosed from living larvae ofAgrotis fucosa placed on the surface of a culture ofI. japonica incubated in sawdust-rice bran medium.  相似文献   

2.
Oxygen consumption by ammocoetes of the lampreyGeotria australis in air   总被引:1,自引:0,他引:1  
 When covered by moistened lint-free gauze, the larvae (ammocoetes) of the lamprey Geotria australis survived, without apparent discomfort, for 4 days in water-saturated air at 10, 15 and 20 °C. In air, the mean standard rates of O2 consumption of medium to large ammocoetes of G. australis (xˉ=0.52 g) at 10, 15 and 20 °C were 14.5, 35.7 and 52.1 μl⋅g-1⋅h-1, respectively. At 15 °C, the slope of the relationship between log O2 consumption (μl O2⋅h-1) and log body weight for ammocoetes over a wide range in body weight was 0.987. The Q 10s for rate of O2 consumption between 10 and 15 °C, 15 and 20 °C and 10 and 20 °C were 4.9, 2.9 and 3.6, respectively. Our results and observations of the ammocoetes suggest that, when out of water, larval G. australis derives most of its O2 requirements from cutaneous respiration, particularly at lower temperatures. This would be facilitated by the small size and elongate shape (and thus a relatively high surface-to-volume ratio), low metabolic rate, thin dermis, extensive subdermal capillary network and high haemoglobin concentration of larval G. australis. Accepted: 28 March 1996  相似文献   

3.
IndividualEncarsia formosa parasitoids were observed continuously until the parasitoids flew away, either on clean tomato leaflets, on leaflets with honeydew, or on leaflets with unparasitized and parasitized whitefly larvae. Encounters with unparasitized and parasitized whitefly larvae, and contact with honeydew arrested the parasitoids on the leaflet. The walking speed increased linearly from 0.179 to 0.529 mm/s between 15 and 25–30°C. The walking activity showed another relationship with temperature: it was below 10% at 15 and 18°C, and increased to about 75% at 20, 25 and 30°C. It was not affected by host encounters or by 1 to 4 ovipositions. The total handling time of hosts was between 1.8–21.8% of the total time on the leaflet. Self-superparasitism was not observed. Conspecific-superparasitism did occur in 14% of the encounters with hosts containing a parasitoid egg, but was not observed anymore when the parasitoid egg had hatched. Experienced parasitoids superparasitized as often as naive females. The foraging behaviour ofE. formosa from landing on a leaf until departure has now been quantified and is discussed.  相似文献   

4.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

5.
Morphology and culture studies on germlings of Sargassum thunbergii (Mertens et Roth) Kuntze were carried out under controlled laboratory conditions. Growth characteristics of these germlings grown under different temperatures (from 10 to 25°C), irradiances (from 9 to 88 μmol photons m−2 s−1), and under blue and white light conditions are described. The development of embryonic germlings follows the classic “8 nuclei 1 egg” type described for Sargassaceae. Fertilized eggs spent 5–6 h developing into multicellular germlings with abundant rhizoids after fertilization. Under conditions of 20°C, 44 μmol photons m−2 s−1 and photoperiod of 12 h, young germlings with one or two leaflets reached 2–3 mm in length after 8 weeks. Temperature variations (10, 15, 20, 25°C) under 88 μmol photons m−2 s−1 significantly influenced the growth rate within the first week, although this effect became less obvious after 8 weeks, especially at 15 and 20°C. Variation in germling growth was highly significant under different irradiances (9, 18, 44, 88 μmol photons m−2 s−1) at 25°C. Low temperature (10°C) reduced germling growth. Growth of germlings cultured under blue light was lower than in white light. Optimal growth of these germlings occurred at 25°C and 44 μmol photons m−2 s−1.  相似文献   

6.
Arctic ground squirrels overwintering in northern Alaska experience average soil temperature of −10°C. To examine energetic costs of arousing from hibernation under arctic compared to temperate conditions, captive ground squirrels were maintained in ambient temperatures (T a) of 2, −5 and −12°C. Rates of oxygen consumption and carbon dioxide production were used to estimate metabolic rate and fuel use during the three phases of arousal episodes: rewarming, euthermia, and recooling. Respiratory quotient comparisons suggest exclusive use of lipid during rewarming and mixed fuel use during euthermia. Animals rewarming from torpor at T a −12°C took longer, consumed more oxygen, and attained higher peak rates of oxygen consumption when compared to 2°C. T a had no significant effect on cost or duration of the euthermic phase. Animals recooled faster at −12°C than at 2°C, but total oxygen consumption was not different. T a had no significant effect on the total cost of arousal episodes when all three phases are included. Arousal episodes account for 86% of estimated costs of a complete hibernation cycle including torpor when at 2°C and only 23% at −12°C. Thus, due to the higher costs of steady-state metabolism during torpor, proportional metabolic costs of arousal episodes at T a characteristic of the Arctic are diminished compared to relative costs of arousals in more temperate conditions.  相似文献   

7.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

8.
Studied was the effect of temperature in the range 12–46 °C on the rate of bacterial decolorization of the mono-azo dye Acid Orange 7 by Alcaligenes faecalis 6132 and Rhodococcus erythropolis 24. With both strains the raise of temperature led to a corresponding raise of decolorization rate better manifested by R. erythropolis. The analysis of the Arrhenius plot revealed a break near the middle of the temperature range. The regression analysis showed practically complete identity of the observed break point temperatures (T BP): 20.7 °C for Alc. faecalis and 20.8 °C for R. erythropolis. The values of the activation energy of the decolorization reaction (E a) were found to depend on both the organism and the temperature range. In the range below T BP the estimated values of E a were 138 ± 7 kJ mol−1 for Alc. faecalis and 160 ± 8 kJ mol−1 for R. erythropolis. In the range above T BP they were 54.2 ± 1.8 kJ mol−1 for Alc. faecalis and 37.6 ± 4.1 kJ mol−1 for R. erythropolis. Discussed are the possible reasons for the observed abrupt change of the activation energy.  相似文献   

9.
Influence of culture conditions such as light, temperature and C/N ratio was studied on growth of Haematococcus pluvialis and astaxanthin production. Light had significant effect on astaxanthin production and it varied with its intensity and direction of illumination and effective culture ratio (ECR, volume of culture medium/volume of flask). A 6-fold increase in astaxanthin production (37 mg/L) was achieved with 5.1468·107 erg·m−2·s−1 light intensity (high light, HL) at effective culture ratio of 0.13 compared to that at 0.52 ECR, while the difference in the astaxanthin production was less than 2 — fold between the effective culture ratios at 1.6175·107 erg·m−2·s−1 light intensity (low light, LL). Multidirectional (three-directional) light illumination considerably enhanced the astaxanthin production (4-fold) compared to unidirectional illumination. Cell count was high at low temperature (25 °C) while astaxanthin content was high at 35 °C in both autotrophic and heterotrophic media. In a heterotrophic medium at low C/N ratio H. pluvialis growth was higher with prolonged vegetative phase, while high C/N ratio favoured early encystment and higher astaxanthin formation.  相似文献   

10.
The chlorophyll fluorescence (F) temperature curves in a linear time-temperature heating/cooling regime were used to study heat-induced irreversible F changes in primary green leaves of spring barley (Hordeum vulgare L. cv. Akcent). The leaf segments were heated in a stirred water bath at heating rates of 0.0083, 0.0166, 0.0333, and 0.0500 °C s−1 from room temperature up to maximal temperature T m and then linearly cooled to 35 °C at the same rate. The F intensity was measured by a pulse-modulated technique. The results support the existence of the two critical temperatures of irreversible F changes postulated earlier, at 45–48 and 53–55 °C. The critical temperatures are slightly dependent on the heating rate. Two types of parameters were used to characterize the irreversibility of the F changes: the coefficient of irreversibility μ defined as the ratio of F intensity at 35 °C at the starting/ending parts of the cycle and the slopes of tangents of linear parts of the F temperature curve. The dependence of μ on T m revealed a maximum, which moved from 54 to 61 °C with the increasing heating/cooling rate v from 0.0083 to 0.0500 °C s−1, showing two basic phases of the irreversible changes. The Arrhenius and Eyring approaches were applied to calculate the activation energies of the initial increase in μ. The values varied between 30 and 50 kJ mol−1 and decreased slightly with the increasing heating rate.  相似文献   

11.
The effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii were determined. Of the three temperatures tested, 10, 25 and 35°C, the maximal geosmin concentration and geosmin productivity were yielded at 10°C, while the highest chl a production was observed at 25°C. In the studies on light intensity, the maximal geosmin concentration and geosmin productivity were observed at 10 μmol m−2 s−1, while the highest chl a production was at 20 μmol m−2 s−1. It was suggested that more geosmin was synthesized with lower chl a demand. Meanwhile, the relative amounts of extra- and intracellular geosmin were investigated. Under optimum growth conditions (20 μmol m−2 s−1, 25°C; BG-11 medium), the amounts of extracellular geosmin increased as the growth progressed and reached the maximum in the stationary phase, while the intracellular geosmin reached its maximum value in the late exponential phase, and then began to decline. However, under the low temperature (10°C) or light (10 μmol m−2 s−1) conditions, more intracellular geosmin was synthesized and mainly accumulated in the cells. The proportions of extracellular geosmin were high, to 33.33 and 32.27%, respectively, during the stationary phase at 35°C and 20 μmol m−2 s−1. It was indicated that low temperature or light could stimulate geosmin production and favor the accumulation of geosmin in cells, while more intracellular geosmin may be released into the medium at higher temperatures or optimum light intensity.  相似文献   

12.
Pre-matured florets of Benibana, a cultivar of saffron thistle (Carthamus tinctorius L.) was irradiated with UV-B (280–320 nm) or UV-C (254 nm) light for 48 h at 23±1 °C and the influence of UV-light on carthamin accumulation and floret elongation was investigated. UV-C light enhances carthamin accumulation most prominently, showing a specific value of 52.3 nmol carthamin·dm−3·h−1·25μm−2 (13.9 times of control), while it restricts floret elongation by a light-suppression manner (net elongation: 0.058 mm·h−1, one ninth of control). UV-B light is also promotive for the red colour appearance (25.0 nmol carthamin·dm−3·h−1·25 μm−2, 6.7 times of control) with suppressing floret elongation (net elongation: 0.17 mm·h−1, one third of control). Heterogeneous productivity of carthamin was seen in floret tissues after continuous treating under UV-C light. Carthamin accumulation, heterogeneous carthamin productivity and decrease of floret elongation restraint under UV-lights are discussed.  相似文献   

13.
The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein–0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as Rabs = 640.0 ±3.1 W.m - 2 {R_{abs}} = 640.0 \pm 3.1\, W.{m^{ - 2}} . Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 ± 2.7 W m−2; long wave (from the sky and from terrestrial surfaces) averaged 342.1 ± 1.5 W m−2. It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature ( T\textmr* ) \left( {T_{\text{mr}}^* } \right) . Average T\textmr* T_{\text{mr}}^* was 101.4 ± 1.2°C, in contrast to the usual mean radiant temperature, Tmr = 65.1 ±0.5° C {T_{mr}} = 65.1 \pm 0.5^\circ C . Estimates of T\textmr* T_{\text{mr}}^* were considered as more reliable than those of T mr in evaluating the thermal environment in the open field, because T mr is almost totally associated only with long wave radiation.  相似文献   

14.
Respiration measurements were made on the entire aboveground parts of young, field-grown hinoki cypress (Chamaecyparis obtusa) trees at monthly intervals over a 5-year period, to examine the effect of temperature on maintenance and growth respiration coefficients. The respiration rate of the trees was grouped on a monthly basis and then partitioned into maintenance and growth components. The maintenance respiration coefficient increased exponentially with air temperature. The maintenance respiration coefficient at a temperature of 0°C and itsQ 10 value were 0.205 mmol CO2 g−1 d.w. month−1 and 1.81, respectively. The growth respiration coefficient, which was virtually independent of temperature, had a mean value of 38.06±1.95 (SE) mmol CO2g−1 d.w. The growth rate increased exponentially with increasing temperature up to a peak at around 18°C, and thereafter declined, thereby resulting in the growth respiration rate being increasingly less sensitive to increasing air temperature. The reported decreases in theQ 10 value of total respiration with increasing air temperature is due to the way in which the growth component of respiration responds to temperature.  相似文献   

15.
Synopsis The routine swimming speed (S) of three groups of 4, 9 and 32 cm total length (LT) juvenile cod (Gadus morhua) was quantified in the laboratory at 6 – 10 different temperatures (T) between 3.2 and 16.7°C. At temperatures between 5 and 15°C, mean group S increased exponentially with increasing T (S=a ebT) and the effect of temperature (b = 0.082, Q10 = 2.27) was not significantly different among the groups (over the 8-fold difference in fish sizes of early- and post-settlement juveniles). Differences in mean S among individuals within each group were quite large (coefficient of variation = 40 – 80%). Swimming data for juveniles and those collected for groups of 0.4, 0.7 and 0.9 cm standard length (LS) larvae were combined to assess the effect of body size on S. At 8°C, S (mm s−1) increased with LS (mm) according to: S = 0.26LSΦ−5.28LS−1, where Φ = 1.55LS−0.08. Relative S (body lengths s−1) was related to LS by a dome-shaped relationship having a maximum value (0.49 body lengths s−1) at 18.5 – 19 mm LS corresponding to the sizes of fish at the end of larval-juvenile metamorphosis. Previous larval cod IBM’s using a cruise-predator mode likely overestimated rates of foraging (prey searching and encounters) by a factor of ~2, whereas foraging rates in pause-travel models are closer to estimates of swimming velocities obtained in this and other laboratory studies.  相似文献   

16.
Volder  Astrid  Bliss  Lawrence C.  Lambers  Hans 《Plant and Soil》2000,227(1-2):139-148
Polar-desert plants experience low average air temperatures during their short growing season (4–8 °C mean July temperature). In addition, low availability of inorganic nitrogen in the soil may also limit plant growth. Our goals were to elucidate which N sources can be acquired by polar-desert plants, and how growth and N-uptake are affected by low growth temperatures. We compared rates of N-uptake and increases in mass and leaf area of two polar-desert species (Cerastium alpinum L. and Saxifraga caespitosa L.) over a period of 3 weeks when grown at two temperatures (6 °C vs. 15 °C) and supplied with either glycine, NH4 + or NO3 . At 15 °C, plants at least doubled their leaf area, whereas there was no change in leaf area at 6 °C. Measured mean N-uptake rates varied between 0.5 nmol g−1 root DM s−1 on glycine at 15 °C and 7.5 nmol g−1 root DM s−1 on NH4 + at 15 °C. Uptake rates based upon increases in mass and tissue N concentrations showed that plants had a lower N-uptake rate at 6 °C, regardless of N source or species. We conclude that these polar-desert plants can use all three N sources to increase their leaf area and support flowering when grown at 15 °C. Based upon short-term (8 h) uptake experiments, we also conclude that the short-term capacity to take up inorganic or organic N is not reduced by low temperature (6 °C). However, net N-uptake integrated over a three-week period is severely reduced at 6 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Possible links between cold-tolerance and desiccation resistance were examined between larvae of the goldenrod gall fly collected from Michigan, southern Ohio, and Alabama locations as their host plant senesced. After acclimation to 5°C, Michigan-collected larvae were more cold-tolerant (25% survival after a 96 h exposure to −40°C) than larvae from Ohio (10% survival) and Alabama (0% survival). Increased cold-tolerance was partially linked to higher concentrations of the cryoprotectant glycerol (Michigan: 500 ± 30 mmol; Ohio: 270 ± 20; Alabama: 220 ± 20). Moreover, cryoprotectants may have functioned to reduce rates of overall and cuticular water loss for Michigan larvae, 0.10 ± 0.01 and 0.037 ± 0.003 μg mm−2 h−1, respectively, values that were 40-44% lower than those for Ohio and Alabama larvae and may represent a link between desiccation resistance and cold-tolerance. After acclimation to 20°C, Alabama-collected larvae had metabolic rates that were 40% lower than those from Ohio and Michigan that averaged 0.100 ± 0.006 μl of CO2 produced g−1 h−1. The lower metabolic rate of Alabama-collected larvae at 20°C likely resulted in reduced respiratory transpiration that may represent a mechanism to maintain water balance at the higher overwintering temperatures they typically experience.  相似文献   

18.
Kelderman  P.  van de Repe  A. M. 《Hydrobiologia》1982,91(1):489-490
Extended abstract Lake Grevelingen is a brackish water lake in the SW Netherlands. The lake has an area of 108 km2, a mean depth of 5.3 m (maximum 48 m), a mean chlorinity of 13 to 16%0 Cl, and a hydraulic residence time of about 8 years. Mass budget studies have shown a consistent seasonal pattern in the phosphorus sediment-water exchange in Lake Grevelingen (Kelderman 1980). From May to August a P mobilization from the sediment takes place, estimated atca. 12.5 mg P · m−2 · day−1. The sediment accumulatesca. 5.5 mg P · m−2 · day−1 during the rest of the year. Temperature may be an important factor in establishing this pattern. Sediment-water exchange was studied by means of laboratory experiments under specified conditions. Sediment cores (30 cm depth, 11 cm diameter) were taken at four stations in the lake, with sediment types varying from medium- to muddy sand (Fig. 1). The cores with overlying water (ca. 21) were placed in the dark at 5 °C in thermostatically controlled water baths. After a week's incubation time the temperature was slowly raised, such that after three weeks eight cores (four sediment types, duplicates) were at 5 °C, eight were at 10 °C, eight at 15 °C and eight at 20 °C. The same procedure was applied to the four control cores, containing lake water.  相似文献   

19.
Summary Minute ventilation (V E), tidal volume (V T), respiratory frequency (f) and clavicular air sac gas composition were measured in conscious domestic fowl breathing air and hypoxic gas mixtures at neutral (18±1°C) and raised (33±1°C) air temperatures. Increases inV E caused by inhalation of 10%, 8% or 6.5% O2 in N2, respectively, were independent of temperature although at each level the absoluteV E was ca. 21·min−1 greater in the panting birds. Changes in respiratory pattern during hypoxia were markedly dependent on temperature. At 18°C almost all of the increasedV E resulted from increasedf. At 33°C hypoxia led to a strong suppression off and increase inV T. It is concluded that hyperthermia and hypoxia are additive and non-interactive in their effects on ventilatory drive, in agreement with previously reported effects of hypercapnia and physical exercise on breathing in panting fowl.  相似文献   

20.
Hydromedion sparsutum is a locally abundant herbivorous beetle on the sub-Antarctic island of South Georgia, often living in close association with the tussock grass Parodiochloa flabellata. Over a 4-day period in mid-summer when the air temperature varied from 0 to 20°C, the temperature in the leaf litter 5–10 cm deep at the base of tussock plants (the microhabitat of H. sparsutum) was consistently within the range of 5–7.5°C. Experiments were carried out to assess the ability of H. sparsutum larvae collected from this thermally stable environment to acclimate when maintained at lower (0°C) and higher (15°C) temperatures. The mean supercooling points (freezing temperature) of larvae collected in January and acclimated at 0°C for 3 and 6 weeks and 15°C for 3 weeks were all within the range of −2.6 to −4.6°C. Larvae in all treatment groups were freeze tolerant. Acclimation at 0°C significantly increased survival in a 15-min exposure at −8°C (from 27 to 96%) and −10°C (from 0 to 63%) compared with the field-fresh and 15°C-treated larvae. Similarly, survival of 0°C-acclimated larvae in a 72-h exposure at −6°C increased from 20 to 83%. Extending the acclimation period at 0°C to 6 weeks did not produce any further increase in cold tolerance. The concentrations of glucose and trehalose in larval body fluids increased significantly with low temperature acclimation. Larvae maintained at 15°C for 3 weeks (none survived for 6 weeks) were less able to survive 1-h exposures between 30 and 35°C than the 0°C-treated samples. Whilst vegetation and snow cover are an effective buffer against low winter temperatures in many polar insects, the inability of H. sparsutum larvae to acclimate or survive at 15°C suggests that protection against high summer temperatures is equally important for this species. Accepted: 2 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号