首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Accumulating evidence suggests a role for microRNAs (miRNAs) in regulating various processes of mammalian postnatal development and aging. To investigate the changes in blood‐based miRNA expression from preterm infants to adulthood, we compared 365 miRNA expression profiles in a screening set of preterm infants and adults. Approximately one‐third of the miRNAs were constantly expressed from postnatal development to adulthood, another one‐third were differentially expressed between preterm infants and adults, and the remaining one‐third were not detectable in these two groups. Based on their expression in infants and adults, the miRNAs were categorized into five classes, and six of the seven miRNAs chosen from each class except one with age‐constant expression were confirmed in a validation set containing infants, children, and adults. Comparing the chromosomal locations of the different miRNA classes revealed two hot spots: the miRNA cluster on 14q32.31 exhibited age‐constant expression, and the one on 9q22.21 exhibited up‐regulation in adults. Furthermore, six miRNAs detectable in adults were down‐regulated in older adults, and four chosen for individual quantification were verified in the validation set. Analysis of the network functions revealed that differentially regulated miRNAs between infants and adults and miRNAs that decreased during aging shared two network functions: inflammatory disease and inflammatory response. Four expression patterns existed in the 11 miRNAs from infancy to adulthood, with a significant transition in ages 9–20 years. Our results provide an overview on the regulation pattern of blood miRNAs throughout life and the possible biological functions performed by different classes of miRNAs.  相似文献   

4.
5.
6.
7.
8.
MicroRNAs (miRNAs) are endogenous, small non‐coding RNAs known to regulate expression of protein‐coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein‐coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self‐renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号