首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the hypothesis that a failure of the immune system to eradicate tumors is due to the immunosuppressive environment created by the growing tumor, which is influenced by the site of tumor growth. We demonstrated that T cell responses to a bystander Ag in mice were suppressed by a growing CT26 tumor. T cells purified from the growing tumor expressed mRNA for IL-10, TGF-beta, and Foxp3. Intracellular cytokine staining revealed a high frequency of IL-10-secreting macrophages, dendritic cells, and CD4+ and CD8+ T cells infiltrating the tumor. In contrast, T cell IFN-gamma production was weak and CD8+ CTL responses were undetectable in mice with CT26 lung metastases and weak and transient following s.c. injection of CT26 cells, but were enhanced in the presence of anti-IL-10 and anti-TGF-beta. Consistent with this, removal of CD8+ T cells abrogated CTL responses and promoted progression of the s.c. tumor. However, in the lung model, depletion of CD8+ T cells significantly reduced the tumor burden. Furthermore, depletion of CD4+ or CD25+ T cells in vivo reduced tumor burden in s.c. and lung models, and this was associated with significantly enhanced IFN-gamma production by CD8+ T cells. These findings suggest that tumor growth facilitates the induction or recruitment of CD4+ regulatory T cells that secrete IL-10 and TGF-beta and suppress effector CD8+ T cell responses. However, CD8+ T regulatory cells expressing IL-10 and TGF-beta are also recruited or activated by the immunosuppressive environment of the lung, where they may suppress the induction of antitumor immunity.  相似文献   

2.
Although interleukin-10 (IL-10) is commonly regarded as an immunosuppressive cytokine, a wealth of evidence is accumulating that IL-10 also possesses some immunostimulating antitumor properties. Previous studies demonstrated that forced expression of the IL-10 gene in tumor cells could unexpectedly produce antitumor effects. In this study, we explored the tumorigenesis of EG7 cells transduced with IL-10 gene. In vivo, IL-10 gene transfer reduced tumorigenic capacity of EG7 cells and prolonged survival of the EG7 tumor-bearing mice. It was found that the cytotoxicities of cytotoxic T lymphocytes (CTL) and natural killer cells (NK cells) were enhanced. Assessment of the immune status of the animals showed prevalence of a systemic and tumor-specific Th2 response (high levels of IL-4 and IL-10). To improve the therapeutic efficacy, we combined with intratumoral injection of adenovirus-mediated lymphotactin (Ad-Lptn) into the overestablished EG7 tumor model. More significant inhibition of tumor growth were observed in EG7 tumor-bearing mice that received combined treatment with IL-10 and Lptn gene than those of mice treated with IL-10 or Lptn gene alone. The highest NK cells and CTL activity was induced in the combined therapy group, increasing the production of IL-2 and interferon-γ (IFN-γ) significantly but decreasing the expression of immune suppressive cells (CD4+Foxp3+ Treg cells and Gr1+CD11b+ MDSCs). The necrosis of tumor cells was markedly observed in the tumor tissues, accompanying with strongest expression of Mig (monokine induced by interferon-gamma) and IP-10 (interferon-inducible protein 10), weakest expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases-2 (MMP-2). In vivo, depletion analysis demonstrated that CD8+ T cells and NK cells were the predominant effector cell subset responsible for the antitumor effect of IL-10 or Lptn gene. These findings may provide a potential strategy to improve the antitumor efficacy of IL-10 and Lptn.  相似文献   

3.
Antitumor and antimetastatic activity of IL-23   总被引:17,自引:0,他引:17  
The structure and T cell stimulatory effects of the recently discovered cytokine IL-23 are similar to, but distinct from, those of IL-12. Although the antitumor activities of IL-12 are well characterized, the effect of IL-23 on tumor growth is not known. In this study, murine CT26 colon adenocarcinoma and B16F1 melanoma cells were engineered using retroviral vectors to release single-chain IL-23 (scIL-23) to evaluate its antitumor activity. In BALB/c mice, scIL-23-transduced CT26 cells grew progressively until day 26 to an average size of 521 +/- 333 mm(3), then the tumors started to regress in most animals, resulting in a final 70% rate of complete tumor rejection. scIL-23 transduction also significantly suppressed lung metastases of CT26 and B16F1 tumor cells. In addition, mice that rejected scIL-23-transduced tumors developed a memory response against subsequent wild-type tumor challenge. Compared with scIL-12-expressing CT26 cells, scIL-23-transduced tumors lacked the early response, but achieved comparable antitumor and antimetastatic activity. These results demonstrated that IL-23, like IL-12, provided effective protection against malignant diseases, but it probably acted by different antitumor mechanisms. As a first step in identifying these antitumor mechanisms, tumor challenge studies were performed in immunocompromised hosts and in animals selectively depleted of various lymphocyte populations. The results showed that CD8(+) T cells, but not CD4(+) T cells or NK cells, were crucial for the antitumor activity of IL-23.  相似文献   

4.
The successful induction of T cell-mediated protective immunity against poorly immunogenic malignancies remains a major challenge for cancer immunotherapy. Here, we demonstrate that the induction of tumor-protective immunity by IL-12 in a murine neuroblastoma model depends entirely on the CXC chemokine IFN-gamma-inducible protein 10 (IP-10). This was established by in vivo depletion of IP-10 with mAbs in mice vaccinated against NXS2 neuroblastoma by gene therapy with a linearized, single-chain (sc) version of the heterodimeric cytokine IL-12 (scIL-12). The efficacy of IP-10 depletion was indicated by the effective abrogation of scIL-12-mediated antiangiogenesis and T cell chemotaxis in mice receiving s.c. injections of scIL-12-producing NXS2 cells. These findings were extended by data demonstrating that IP-10 is directly involved in the generation of a tumor-protective CD8+ T cell-mediated immune response during the early immunization phase. Four lines of evidence support this contention: First, A/J mice vaccinated with NXS2 scIL-12 and depleted of IP-10 by two different anti-IP-10 mAbs revealed an abrogation of systemic-protective immunity against disseminated metastases. Second, CD8+ T cell-mediated MHC class I Ag-restricted tumor cell lysis was inhibited in such mice. Third, intracellular IFN-gamma expressed by proliferating CD8+ T cells was substantially inhibited in IP-10-depleted, scIL-12 NXS2-vaccinated mice. Fourth, systemic tumor protective immunity was completely abrogated in mice depleted of IP-10 in the early immunization phase, but not if IP-10 was depleted only in the effector phase. These findings suggest that IP-10 plays a crucial role during the early immunization phase in the induction of immunity against neuroblastoma by scIL-12 gene therapy.  相似文献   

5.
Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.  相似文献   

6.
Antiangiogenic and antitumor activities of IL-27   总被引:10,自引:0,他引:10  
IL-27 is a novel IL-6/IL-12 family cytokine playing an important role in the early regulation of Th1 responses. We have recently demonstrated that IL-27 has potent antitumor activity, which is mainly mediated through CD8(+) T cells, against highly immunogenic murine colon carcinoma. In this study, we further evaluated the antitumor and antiangiogenic activities of IL-27, using poorly immunogenic murine melanoma B16F10 tumors, which were engineered to overexpress single-chain IL-27 (B16F10 + IL-27). B16F10 + IL-27 cells exerted antitumor activity against not only s.c. tumor but also experimental pulmonary metastasis. Similar antitumor and antimetastatic activities of IL-27 were also observed in IFN-gamma knockout mice. In NOD-SCID mice, these activities were decreased, but were still fairly well-retained, suggesting that different mechanisms other than the immune response are also involved in the exertion of these activities. Immunohistochemical analyses with Abs against vascular endothelial growth factor and CD31 revealed that B16F10 + IL-27 cells markedly suppressed tumor-induced neovascularization in lung metastases. Moreover, B16F10 + IL-27 cells clearly inhibited angiogenesis by dorsal air sac method, and IL-27 exhibited dose-dependent inhibition of angiogenesis on chick embryo chorioallantoic membrane. IL-27 was revealed to directly act on HUVECs and induce production of the antiangiogenic chemokines, IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma. Finally, augmented mRNA expression of IP-10 and monokine induced by IFN-gamma was detected at the s.c. B16F10 + IL-27 tumor site, and antitumor activity of IL-27 was partially inhibited by the administration of anti-IP-10. These results suggest that IL-27 possesses potent antiangiogenic activity, which plays an important role in its antitumor and antimetastatic activities.  相似文献   

7.
The antitumor efficacy of EBV-induced molecule 1 ligand CC chemokine (ELC/CCL19) was evaluated in a murine lung cancer model. The ability of ELC/CCL19 to chemoattract both dendritic cells and T lymphocytes formed the rationale for this study. Compared with diluent-treated tumor-bearing mice, intratumoral injection of recombinant ELC/CCL19 led to significant systemic reduction in tumor volumes (p < 0.01). ELC/CCL19-treated mice exhibited an increased influx of CD4 and CD8 T cell subsets as well as dendritic cells at the tumor sites. These cell infiltrates were accompanied by increases in IFN-gamma, MIG/CXCL9, IP-10/CXCL10, GM-CSF, and IL-12 but a concomitant decrease in the immunosuppressive molecules PGE(2) and TGFbeta. Transfer of T lymphocytes from ELC/CCL19 treated tumor-bearing mice conferred the antitumor therapeutic efficacy of ELC/CCL19 to naive mice. ELC/CCL19 treated tumor-bearing mice showed enhanced frequency of tumor specific T lymphocytes secreting IFN-gamma. In vivo depletion of IFN-gamma, MIG/CXCL9, or IP-10/CXCL10 significantly reduced the antitumor efficacy of ELC/CCL19. These findings provide a strong rationale for further evaluation of ELC/CCL19 in tumor immunity and its use in cancer immunotherapy.  相似文献   

8.
IL-21 is an immune-stimulatory four alpha helix cytokine produced by activated T cells. To study the in vivo antitumor activities of IL-21, TS/A murine mammary adenocarcinoma cells were genetically modified to secrete IL-21 (TS/A-IL-21). These cells developed small tumors that were subsequently rejected by 90% of s.c. injected syngeneic mice. Five days after injection, TS/A-IL-21 tumors showed numerous infiltrating granulocytes, NK cells, and to a lesser extent CD8(+) T cells, along with the expression of TNF-alpha, IFN-gamma, and endothelial adhesion molecules ICAM-1 and VCAM-1. At day 7, CD8(+) and CD4(+) T cells increased together with IFN-gamma, and the CXC chemokines IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-inducible T cell alpha-chemoattractant. The TS/A-IL-21 tumor displayed a disrupted vascular network with abortive sprouting and signs of endothelial cell damage. In vivo depletion experiments by specific Abs showed that rejection of TS/A-IL-21 cells required CD8(+) T lymphocytes and granulocytes. When injected in IFN-gamma-deficient mice, TS/A-IL-21 cells formed tumors that regressed in only 29% of animals, indicating a role for IFN-gamma in IL-21-mediated antitumor response, but also the existence of IFN-gamma-independent effects. Most immunocompetent mice rejecting TS/A-IL-21 cells developed protective immunity against TS/A-pc (75%) and against the antigenically related C26 colon carcinoma cells (61%), as indicated by rechallenge experiments. A specific CTL response against the gp70-env protein of an endogenous murine retrovirus coexpressed by TS/A and C26 cells was detected in mice rejecting TS/A-IL-21 cells. These data suggest that IL-21 represents a suitable adjuvant in inducing specific CTL responses.  相似文献   

9.
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26(HER2/neu)) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ-deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4(+) or CD8(+) T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26(HER2/neu) tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.  相似文献   

10.
Previous work from our laboratory showed that hydrocortisone (HC) combined with IL-15 induces expansion of activated human NK cells. We set up an experimental tumor model to evaluate the use of adoptively transferred, HC plus IL-15 (HC/IL-15)-activated and -expanded murine NK cells in the treatment of syngeneic mice carrying established lung metastases of the CT26 transplantable tumor. We also examined the effect of denileukin diftitox (Ontak) on the depletion of regulatory T cells to enhance the in vivo antitumor immunity induced by the adoptively transferred NK cells. Our results clearly demonstrate that murine DX5(+) NK cells are largely expanded in the presence of IL-15 plus HC while retaining intact their functional status. Moreover, when intravenously infused, they mediated significant antitumor responses against CT26 lung tumors in syngeneic BALB/c animals that were further enhanced upon pretreatment of the tumor-bearing animals with Ontak. Total splenocytes and isolated splenic T cells from NK-treated mice responded in vitro against CT26 tumor cells as evidenced by IFN-γ-based ELISPOT, proliferation, and cytotoxicity assays. Importantly, animals treated with Ontak plus adoptive transfer of HC/IL-15-expanded NK cells significantly retarded CT26 tumor growth after a rechallenge with the same tumor s.c. in their flanks. Taken altogether, our data suggest that NK cell adoptive transfer can trigger adaptive antitumor T cell responses, and regulatory T cell depletion by Ontak is mandatory for enabling HC/IL-15-activated NK cells to promote long-lasting adaptive antitumor immunity.  相似文献   

11.
A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.  相似文献   

12.
Intratumoral delivery of IL-12 and GM-CSF induces local and systemic antitumor CD8(+) T cell activation and tumor kill. However, the effector response is transient and is rapidly countered by CD4(+) Foxp3(+) T suppressor cell expansion. To determine whether depletion of the pre-existing T suppressor cell pool prior to treatment could diminish posttherapy regulatory cell resurgence, FVBneuN mice bearing advanced spontaneous mammary tumors were treated with cyclophosphamide (CY) 1 d before IL-12/GM-CSF therapy. Administration of CY mediated a significant delay in the post-IL-12/GM-CSF T suppressor cell rebound, resulting in a 7-fold increase in the CD8(+) CTL/T suppressor cell ratio, a 3-fold enhancement of CTL cytotoxicity, and an extension of the effector window from 3 to 7 d. In long-term therapy studies, chronic chemoimmunotherapy promoted a dramatic enhancement of tumor regression, resulting in complete cure in 44% of the mice receiving CY plus IL-12/GM-CSF. Tumor eradication in the chronic therapy setting was associated with the ability to repeatedly rescue and maintain cytotoxic CD8(+) T cell activity. These findings demonstrated that chronic administration of CY in conjunction with immune therapy enhances the initial induction of antitumor T effector cells and, more importantly, sustains their cytotoxic activity over the long-term via persistent blockade of homeostatic counter-regulation.  相似文献   

13.
This study, using the MBT-2 murine bladder tumor model, mainly investigated the role of interleukin-12 (IL-12) in the specific antitumor immune response of a tumor-bearing host when systemically administrated after surgery. Day 17 tumor-bearing mice (D17TBM) along with non-tumor bearing naive mice were treated with daily intraperitoneal (i.p.) injection of IL-12 (0.25 microg/mouse) from day 18 to day 24 for a total of 7 doses. Their splenocytes were obtained on Day 31 for natural killer cells (NK), lymphokine activated killer cells (LAK) and cytotoxic T lymphocyte (CTL) activity assay and lymphocyte subsets phenotypic analysis. The tumor suppression effect of systemic IL-12 administration was evaluated based on the tumor outgrowth of the higher number of tumor cells rechallenged 24 hours after resectioning of the primary tumor. After evaluation on Day 31, the result of in vitro cytotoxicity assay revealed that systemic administration of IL-12 mainly enhanced the splenic LAK and CTL activities in non-tumor-primed naive mice, and the NK activity in tumor-primed D17TBM, respectively. However, in vivo administration of IL-12 with or without IL-2 failed to upgrade the proportions of either CD4+ CD44+ or CD8+ CD44+ T cells subsets in the spleens and regional inguinal lymph nodes (LNs) of both the D17TBM and naive mice. However, the splenic CD8+ CD44+ T-cell subset in the IL-12-treated D17TBM increased prominently after further culturing in the presence of IL-2 400 units/ml plus IL-12 25 ng/ml for 4 days. The fact that systemic administration of IL-12 significantly suppressed the outgrowth of Day-18 challenged tumor cells, especially in D17TBM, clearly indicates that the established specific antitumor immunity in tumor-primed D17TBM was efficiently augmented. From the results of this study, we conclude that, after surgical resection of a primary tumor, systemic administration of IL-12 can be an effective adjuvant therapy because it demonstrates a significant augmentation effect on the tumor-specific immune response in the tumor-primed host.  相似文献   

14.
Activation of T cells requires signals through Ag-specific TCR and costimulatory molecules such as CD40L. Although the use of defined tumor Ags for the induction of protective T cells met with limited success, the CD40-CD40L interaction that was proposed to induce antitumor T cells did not prevent tumor growth completely. Using a model for prostate tumor, a leading cause of tumor-induced mortality in men, we show that the failure is due to a novel functional dichotomy of CD40 whereby it self-limits its antitumor functions by inducing IL-10. IL-10 prevents the CD40-induced CTL and TNF-alpha and IL-12 production, Th1 skewing, and tumor regression. Priming mice with tumor lysate-pulsed IL-10-deficient dendritic cells (DCs) or wild-type DC plus anti-IL-10 Ab establishes antitumor memory T cells that can transfer the protection into syngenic nude mice. Infusion of Ag-pulsed IL-10-deficient but not wild-type DCs back into syngenic mice results in successful therapeutic autovaccination. Thus, we demonstrate the IL-10-sensitive antitumor T cell memory formulating a novel prophylactic and therapeutic principle.  相似文献   

15.
In this study, we developed a mouse model of adoptive immunotherapy reflecting immune recognition of syngeneic tumor cells naturally expressing an endogenous rejection Ag. Specifically, in a pulmonary metastases model, we examined the potency and maintenance of an antitumor CD8(+) CTL response in vivo, as well as its effectiveness against an "extensive" tumor burden. The approach taken was to first generate tumor-specific CTL from mice challenged with the CMS4 sarcoma coadministered with anti-CTLA4 mAb, which has been shown to facilitate the induction of Ag-specific T cell responses in vivo. An H-2L(d)-restricted nonamer peptide, derived from an endogenous murine leukemia provirus was identified as a CMS4-reactive CTL epitope based upon the following: CTL cross-recognition of another syngeneic tumor cell line (CT26 colon carcinoma) previously characterized to express that gene product; sensitization of Ag-negative lymphoblasts or P815 targets with the peptide; and by cold target inhibition assays. In vivo, the adoptive transfer of CMS4-reactive CTL (> or =1 x 10(6)) resulted in nearly the complete regression of 3-day established lung metastases. Furthermore, mice that rejected CMS4 following a single adoptive transfer of CTL displayed antitumor activity to a rechallenge 45 days later, not only in the lung, but also at a s.c. distal site. Lastly, the adoptive transfer of CTL to mice harboring extensive pulmonary metastases (> 150 nodules) led to a substantial reduction in tumor burden. Overall, these data suggest that the adoptive transfer of tumor-specific CTL may have therapeutic potential for malignancies that proliferate in or metastasize to the lung.  相似文献   

16.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

17.
The antitumor activity of a combination of an antitumor polysaccharide, lentinan (a 1–3 glucan with 1–6 branches), and interleukin-2 (IL-2) was evaluated against established MBL-2 lymphoma and S908.D2 sarcoma at i.d. sites. Treatment of the MBL-2-tumor-bearing BDF1 mice with lentinan and IL-2 induced complete regression of tumor in 87.5% of mice treated. In contrast, treatments using either lentinan or IL-2 alone failed to induce complete regression of tumor, although temporal growth inhibition of tumor was observed about in half of the mice treated. Improvements of antitumor effects by the combination of lentinan and IL-2 were also observed in the MBL-2/B6 and S908.D2/B10.D2 systems. Expression of the antitumor effects of lentinan/IL-2 treatments required the intact T cell compartment, because the effects were not observed when nude mice were used. In the MBL-2/B6 system, the antitumor action of lentinan/IL-2 treatment was abolished in mice treated with antibody to CD8 antigen, whereas antibodies to CD4 or NK1.1 were ineffective. Furthermore, augmented tumor-specific cytotoxic T lymphocyte (CTL) activity was observed in regional lymph node cells of the mice after lentinan and IL-2 administration. These data indicate that the antitumor effects of lentinan/IL-2 are mediated by CD8+ CTL but not by CD4+ T cells or NK1.1+ NK/LAK cells, and suggest that this combined therapy may be effective against even established tumors that are resistant to IL-2 therapy.Abbreviations B6 C57BL/6 - BDF1 C57BL/6 × DBA/2 F1 - Lyt2 murine CD8, Lyt2.1. allele of murine CD8 - Lyt2.2 allele of murine CD8 - Lyt3 murine CD8 - L3T4 murine CD4  相似文献   

18.
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.  相似文献   

19.
This study analyzes the involvement of CD4+ and CD8+ T cells in a secondary cellular immune response to the highly metastatic murine lymphoma ESb in situ. This tumor line expresses tumor-associated transplantation Ag which can induce protective immunity in vivo and specific CTL in vitro. In tumor-immune mice the injection of a tumor vaccine (x-irradiated ESb tumor cells) into s.c. implanted vascularized sponges resulted in the generation of a specific secondary immune response characterized by massive leukocyte recruitment and generation of strong CTL activity at the restimulation site. During the antitumor immune response the CD4+:CD8+ T cell ratio decreased significantly and specifically in the restimulated sponges. Depletion of CD8+ but not CD4+ T cells from the tumor immune mice before restimulation significantly reduced the delayed-type hypersensitivity-like response and totally blocked the generation of tumor-specific CTL activity in situ. Only a minority of the CD8+ immune T cells which predominated the secondary response in situ expressed IL-2R and lymph node homing receptors as detected by the mAb MEL-14.  相似文献   

20.
Efficient T cell priming by GM-CSF and CD40 ligand double-transduced C26 murine colon carcinoma is not sufficient to cure metastases in a therapeutic setting. To determine whether a cellular vaccine that interacts directly with both APC and T cells in vivo might be superior, we generated C26 carcinoma cells transduced with the T cell costimulatory molecule OX40 ligand (OX40L) either alone (C26/OX40L) or together with GM-CSF (C26/GM/OX40L), which is known to activate APC. Mice injected with C26/OX40L cells displayed only a delay in tumor growth, while the C26/GM/OX40L tumor regressed in 85% of mice. Tumor rejection required granulocytes, CD4+, CD8+ T cells, and APC-mediated CD40-CD40 ligand cosignaling, but not IFN-gamma or IL-12 as shown using subset-depleted and knockout (KO) mice. CD40KO mice primed with C26/GM/OX40L cells failed to mount a CTL response, and T cells infiltrating the C26/GM/OX40L tumor were OX40 negative, suggesting an impairment in APC-T cell cross-talk in CD40KO mice. Indeed, CD4+ T cell-depleted mice failed to mount any CTL activity against the C26 tumor, while treatment with agonistic mAb to CD40, which acts on APC, bypassed the requirement for CD4+ T cells and restored CTL activation. C26/GM/OX40L cells cured 83% of mice bearing lung metastases, whereas C26/OX40L or C26/GM vaccination cured only 28 and 16% of mice, respectively. These results indicate the synergistic activity of OX40L and GM-CSF in a therapeutic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号