首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Food allergies of type-I-allergy are immunoglobulin E (IgE) mediated and caused by certain proteins or glycoproteins, which are called food allergens. An analytical marker of allergens is the IgE-reactivity to these substances. Normally food allergens are minor components in allergenic source material, which consist of a huge number of chemical different substances. Thus allergen extraction, separation and immunological detection methods are described which identify and characterize individual food allergens by a minimum of manipulation. Favoured separation methods of allergenic extracts are electrophoretic ones allowing the combination of highly resolved protein separations with immunological detection methods subsumed by the term immunoblotting. These techniques are a useful basis to characterize allergens by chemical methods. Once the primary protein structure of a food allergen is established, the way is cleared for the identification of epitopes. Epitopes are immunological detectable parts of a protein or glycoprotein generating the interface between chemical structure and immune-system. The nature of epitopes may differ, for instance, can be conformational, continuous, or built up by glycoconjugates, which determine the stability of food allergens, especially in the case of food processing. Progress in identification and characterization of food allergens will improve diagnostics and therapy of food allergy.  相似文献   

2.
Proteomic analyses of fruits are confronted with a series of specific obstacles: a general low protein content in plant tissues, allergen extraction from highly complex matrices and protein determination in the presence of interfering compounds. Different methods are currently being introduced to achieve higher protein yields and a simultaneous removal of interfering substances, such as polyphenols and polysaccharides. However, no universal protocol suitable for protein purification from any given plant species is available. Protein profiling by 2DE-western blotting offers a powerful tool for the detection and characterization of known and novel plant allergens. Moreover, the detection of IgE-reactive proteins from fruits is improved by combining western blot and alternative visualization techniques. The recent developments in bioinformatics and databases facilitate the interpretation of profiling studies with regard to novel potential fruit allergens.  相似文献   

3.
Proteomic analyses of fruits are confronted with a series of specific obstacles: a general low protein content in plant tissues, allergen extraction from highly complex matrices and protein determination in the presence of interfering compounds. Different methods are currently being introduced to achieve higher protein yields and a simultaneous removal of interfering substances, such as polyphenols and polysaccharides. However, no universal protocol suitable for protein purification from any given plant species is available. Protein profiling by 2DE-western blotting offers a powerful tool for the detection and characterization of known and novel plant allergens. Moreover, the detection of IgE-reactive proteins from fruits is improved by combining western blot and alternative visualization techniques. The recent developments in bioinformatics and databases facilitate the interpretation of profiling studies with regard to novel potential fruit allergens.  相似文献   

4.
Approximately 50% of allergic patients are sensitized against grass pollen allergens. The characterization of specific immunoglobulin E (IgE) reactivity to allergen components in pollen-allergic patients is fundamental for clinical diagnosis and for immunotherapy. Complex allergen extracts are commonly used in diagnostic tests as well as in immunotherapy preparations, but their composition in single allergenic molecules is only partially known. Diagnostic tests which utilize recombinant or immuno-purified allergens have been made available in clinical practice. They allow to obtain specific profiles of IgE reactivity, but the panel of available molecules is far from complete. Here, we used a proteomic approach in order to detect grass allergens from a natural protein extract. A five-grass pollen extract used for diagnosis and immunotherapy was resolved by two dimensional gel electrophoresis (2-DE), and assayed with 9 sera from pollen-allergic patients whose sensitization profile was dissected by using IgE reactivity to recombinant allergens. 2-DE immunoreactivity patterns were matched with IgE reactivity to identify protein spots as candidate allergens. Identity was confirmed by mass spectrometry analysis. We identified 6 out of 8 expected clinically relevant allergens in the natural grass extract. Moreover, we identified different molecular isoforms of single allergens, thus obtaining a more detailed profile of IgE reactivity. Some discrepancies in protein isoform profile and sera immunoreactivity between recombinant and native allergen 5 from Phleum pratense were observed and a new putative allergen was described. The proteomic approach applied to the analysis of a natural allergen allows the comprehensive evaluation of the sensitization profile of allergic patients and the identification of new allergens.  相似文献   

5.
Recombinant products have become invaluable tools for diagnostic as well as therapeutic purposes in modern medicine. Especially in cases where raw naturally derived products are difficult to standardize, well-defined recombinant single components represent the matter of choice. In the recent past, much effort has been undertaken to define individual proteins derived from various sources like pollen, spores of moulds, pet dander, and food causing Type 1 allergic reactions in humans. Therefore, methods for cloning, sequencing, and expressing cDNAs coding for allergens in Escherichia coli became of great interest to allergologists. For the recombinant production of allergens, suitable expression systems, growing conditions, and purification steps have to be established for each individual product. Finally, the purified recombinant allergen has to be carefully investigated for the biochemical, biophysical, and immunological properties. In the following paper, several prokaryotic expression systems, purification strategies, and analytical methods will be presented and pitfalls discussed.  相似文献   

6.
Chow LP  Chiu LL  Khoo KH  Peng HJ  Yang SY  Huang SW  Su SN 《The FEBS journal》2005,272(24):6218-6227
Bermuda grass pollen (BGP) contains a very complex mixture of allergens, but only a few have been characterized. One of the allergens, with an apparent molecular mass of 21 kDa, has been shown to bind serum IgE from 29% of patients with BGP allergy. A combination of chromatographic techniques (ion exchange and reverse phase HPLC) was used to purify the 21 kDa allergen. Immunoblotting was performed to investigate its IgE binding and lectin-binding activities, and the Lysyl-C endopeptidase digested peptides were determined by N-terminal sequencing. The cDNA sequence was analyzed by RACE PCR-based cloning. The protein mass and the putative glycan structure were further elucidated using MALDI-TOF mass spectrometry. The purified 21 kDa allergen was designated Cyn d 24 according to the protocol of International Union of Immunological Societies (IUIS). It has a molecular mass of 18,411 Da by MALDI-TOF analysis and a pI of 5.9. The cDNA encoding Cyn d 24 was predicted to produce a 153 amino acid mature protein containing tow conserved sequences seen in the pathogen-related protein family. Carbohydrate analysis showed that the most abundant N-linked glycan is a alpha(3)-fucosylated pauci-mannose (Man3GlcNAc2) structure, without a Xyl beta-(1,2)-linked to the branching beta-Man. Thus, Cyn d 24 is a glycoprotein and the results of the sequence alignment indicate that this novel allergen is a pathogenesis-related protein 1. To the best of our knowledge, this is the first study to identify any grass pollen allergen as a pathogenesis-related protein 1.  相似文献   

7.
Fel d 1 is a major cat allergen inducing allergic rhinitis and asthma in sensitized individuals. It has a more complex structure when compared with other allergens and therefore expression of recombinant Fel d 1 has been considered a challenge. The present study shows for the first time that a Baculovirus expression system is able to produce an intact rFel d 1 molecule that is glycosylated and structurally equivalent to the natural cat allergen, nFel d 1. Enzymatic digestion of rFel d 1 and further analysis by use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) resulted in a complete coverage of the amino acid sequence of rFel d 1. In addition, the three disulfide bridges at the positions alpha70-beta7, alpha44-beta48, and alpha3-beta73 were verified. The N-glycan structure of rFel d 1 was investigated by a combination of MALDI-TOF MS and monosaccharide analysis by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAC). The N-glycosylation analyses of rFel d 1 refer to a pattern of glycoforms including core alpha1.3-fucosylation that is different from nFel d 1. Further characterization by use of human serum IgE, histamine release, and lymphocyte proliferation assays demonstrated that the immunological characteristics of rFel d 1 are similar to those of nFel d 1. Detailed characterization of both natural and recombinant allergens provides tools to explore immunological mechanisms associated with allergen sensitization and desensitization.  相似文献   

8.
Cladosporium herbarum is an important allergenic fungal species that has been reported to cause allergic diseases in nearly all climatic zones. 5-30% of the allergic population displays IgE antibodies against molds. Sensitization to Cladosporium has often been associated with severe asthma and less frequently with chronic urticaria and atopic eczema. However, no dominant major allergen of this species has been found so far. We present cloning, production, and characterization of NADP-dependent mannitol dehydrogenase of C. herbarum (Cla h 8) and show that this protein is a major allergen that is recognized by IgE antibodies of approximately 57% of all Cladosporium allergic patients. This is the highest percentage of patients reacting with any Cladosporium allergen characterized so far. Cla h 8 was purified to homogeneity by standard chromatographic methods, and both N-terminal and internal amino acid sequences of protein fragments were determined. Enzymatic analysis of the purified natural protein revealed that this allergen represents a NADP-dependent mannitol dehydrogenase that interconverts mannitol and d-fructose. It is a soluble, non-glycosylated cytoplasmic protein. Two-dimensional protein analysis indicated that mannitol dehydrogenase is present as a single isoform. The cDNA encoding Cla h 8 was cloned from a lambda-ZAP library constructed from hyphae and spores. The recombinant non-fusion protein was expressed in Escherichia coli and purified to homogeneity. Its immunological and biochemical identity with the natural protein was shown by enzyme activity tests, CD spectroscopy, IgE immunoblots with sera of patients, and by skin prick testing of Cladosporium allergic patients. This protein therefore is a new major allergen of C. herbarum.  相似文献   

9.
Peanuts (Arachis hypogaea) contain some of the most potent food allergens. In recent years an increasing prevalence of peanut allergies both in children and adults has been observed in the USA and in Europe. In vitro identification and characterization of allergens including those from peanut have been frequently performed by Western blotting. However this method may alter the immunoglobulin E (IgE) antibody reactivity since the proteins are denatured by detergent treatment and/or reduction of disulfide bonds by reducing reagents and does not answer the question how peanut allergens interact with the human digestive apparatus and immune system. Size exclusion chromatography of peanut extract shows that approximately 90% of the total protein content is eluted as one peak in the exclusion volume with a molecular mass of over 200 kDa. The proteins of this fraction were analyzed by blue-native polyacrylamide gel electrophoresis (PAGE), immunoblotting, two-dimensional PAGE and Western blotting. A complex of Ara h 1 (Acc. no. P43237), Ara h 3/4 (AAM46958), Ara h 3 (AAC63045), Ara h 4 (AF086821), Gly 1 (AAG01363) and iso-Ara h 3 (AAT39430) was identified using patients' IgE and allergen-specific monoclonal antibodies; N-terminal sequencing and matrix-assisted laser desorption/ionisation-time of flight analysis verified these findings. A comparison of the peanut allergen sequences of Ara h 3/4, Ara h 3, Ara h 4 and peanut trypsin inhibitor (AF487543) and the proteins Gly 1 and iso-Ara h 3, not yet described as allergens, leads to the conclusion that these proteins are isoallergens of each other. It was shown that these isoallergens are post-translationally cleaved and held together by disulfide bonds in accordance to the 11S plant seed storage proteins signature.  相似文献   

10.
A micropreparative capillary electrophoresis apparatus equipped with a new type of fraction collection device is described: solutes, such as proteins, are adsorbed onto a moving blotting membrane (for instance a polyvinylidene difluoride membrane) as they migrate electrophoretically out of the capillary. The adsorbed proteins are visualized by conventional protein staining methods or by fluorescent labeling. Specific identification of separated components by an immunological technique is demonstrated. The method also offers the potential to analyze proteins and peptides collected on the membrane by gas phase sequencing and mass spectrometry.  相似文献   

11.

Background

Fungal allergy is considered as serious health problem worldwide and is increasing at an alarming rate in the industrialized areas. Rhizopus oyzae is a ubiquitously present airborne pathogenic mold and an important source of inhalant allergens for the atopic population of India. Here, we report the biochemical and immunological features of its 44 kDa sero-reactive aspartic protease allergen, which is given the official designation ‘Rhi o 1’.

Method

The natural Rhi o 1 was purified by sequential column chromatography and its amino acid sequence was determined by mass spectrometry and N-terminal sequencing. Based on its amino acid sequence, the cDNA sequence was identified, cloned and expressed to produce recombinant Rhi o 1. The allergenic activity of rRhi o 1 was assessed by means of its IgE reactivity and histamine release ability. The biochemical property of Rhi o 1 was studied by enzyme assay. IgE-inhibition experiments were performed to identify its cross-reactivity with the German cockroach aspartic protease allergen Bla g 2. For precise characterization of the cross-reactive epitope, we used anti-Bla g 2 monoclonal antibodies for their antigenic specificity towards Rhi o 1. A homology based model of Rhi o 1 was built and mapping of the cross-reactive conformational epitope was done using certain in silico structural studies.

Results

The purified natural nRhi o 1 was identified as an endopeptidase. The full length allergen cDNA was expressed and purified as recombinant rRhi o 1. Purified rRhi o 1 displayed complete allergenicity similar to the native nRhi o 1. It was recognized by the serum IgE of the selected mold allergy patients and efficiently induced histamine release from the sensitized PBMC cells. This allergen was identified as an active aspartic protease functional in low pH. The Rhi o 1 showed cross reactivity with the cockroach allergen Bla g 2, as it can inhibit IgE binding to rBla g 2 up to certain level. The rBla g 2 was also found to cross-stimulate histamine release from the effector cells sensitized with anti-Rhi o 1 serum IgE. This cross-reactivity was found to be mediated by a common mAb4C3 recognizable conformational epitope. Bioinformatic studies revealed high degree of structural resemblances between the 4C3 binding sites of both the allergens.

Conclusion/Significance

The present study reports for the first time anew fungal aspartic protease allergen designated as Rhi o 1, which triggers IgE-mediated sensitization leading to various allergic diseases. Here we have characterized the recombinant Rhi o 1 and its immunological features including cross-reactive epitope information that will facilitate the component-resolved diagnosis of mold allergy.  相似文献   

12.
Wheat is an essential element in our nutrition but one of the most important food allergen sources. Wheat allergic patients often suffer from severe gastrointestinal and systemic allergic reactions after wheat ingestion. In this study, we report the molecular and immunological characterization of a new major wheat food allergen, Tri a 36. The cDNA coding for a C-terminal fragment of Tri a 36 was isolated by screening a wheat seed cDNA expression library with serum IgE from wheat food-allergic patients. Tri a 36 is a 369-aa protein with a hydrophobic 25-aa N-terminal leader peptide. According to sequence comparison it belongs to the low m.w. glutenin subunits, which can be found in a variety of cereals. The mature allergen contains an N-terminal domain, a repetitive domain that is rich in glutamine and proline residues, and three C-terminal domains with eight cysteine residues contributing to intra- and intermolecular disulfide bonds. Recombinant Tri a 36 was expressed in Escherichia coli and purified as soluble protein. It reacted with IgE Abs of ~80% of wheat food-allergic patients, showed IgE cross-reactivity with related allergens in rye, barley, oat, spelt, and rice, and induced specific and dose-dependent basophil activation. Even after extensive in vitro gastric and duodenal digestion, Tri a 36 released distinct IgE-reactive fragments and was highly resistant against boiling. Thus, recombinant Tri a 36 is a major wheat food allergen that can be used for the molecular diagnosis of, and for the development of specific immunotherapy strategies against, wheat food allergy.  相似文献   

13.
刘志刚  张杰  林格 《昆虫学报》2007,50(2):101-105
以Coca's提取液分别提取到不同时期家蚕Bombyx mori的粗浸液,利用SDS-PAGE和Western blotting鉴定其特异性变应原,然后用DEAE-52离子交换层析及切胶纯化出30 kD的特异性变应原,再经MALDI-TOF在线联机分析,所得质谱数据进入网站搜索分析。结果显示:1~5龄家蚕均有20条左右蛋白带,其中 5龄家蚕有23条蛋白带,主带有11条(82、79、60、51、46、38、32、30、28、24和18 kD)。选用家蚕过敏患者阳性血清进行免疫印迹,1~4龄家蚕均显示出82和79 kD的特异性变应原;但只有5龄家蚕的30 kD蛋白为特异性变应原,通过离子交换层析和经切胶纯化出30 kD蛋白,再经MALDI-TOF-MS鉴定该蛋白为外膜蛋白。提示家蚕不同时期抗原成分有所变化,5龄家蚕新出现的30 kD蛋白为特异性变应原。  相似文献   

14.
锯缘青蟹主要过敏原的纯化与鉴定   总被引:2,自引:0,他引:2  
以锯缘青蟹为研究对象,从免疫鉴定、分离纯化、抗体制备和免疫学分析等方面对其主要过敏原进行研究。首先利用过敏者血清的免疫印迹法,确定锯缘青蟹的主要过敏原为分子量约38kD的蛋白。然后通过制备丙酮粉、等电点沉淀、硫酸铵沉淀及加热处理对分子量为38kD的主要过敏蛋白进行了高度纯化。该蛋白的pI约为4.5,与虾的原肌球蛋白Pena1性质相近,证实了锯缘青蟹的主要过敏原为原肌球蛋白。通过免疫新西兰大白兔,制备了原肌球蛋白的抗血清,采用Protein A Sepharose亲和层析柱对动物抗体进行了纯化。该抗血清效价高,经4×105倍稀释后仍能与抗原进行反应。该抗体与甲壳类动物及软体动物的原肌球蛋白具有较强的免疫交叉反应,可用于食品过敏原检测。    相似文献   

15.
Pyroglyphid house dust mites are a major source of allergens in house dust. Mite allergens sensitize and induce asthma, rhinitis, and eczema in a large portion of patients with allergic diseases. Here, the crystal structure of a major mite allergen, Derf 2, derived from Dermatophagoides farinae was solved by single isomorphous replacement method with anomalous scattering (SIRAS) at 2.1A resolution. The present study also demonstrated that the conformation of the allergen was critical in the determination of Th1/Th2 shift based on physicochemical and immunological analyses. This indicates that rigidly folded and singly dispersed structure is essentially required for the generation of Th2 type cells by the allergen, while conformational variant protein leads to Th1 skewing, irrespective of the same amino acid sequence. This structure/function relationship may allow us to develop a novel strategy for hyposensitization therapy in patients with allergic diseases triggered by house dust mite allergens.  相似文献   

16.
Laboratory animal allergy is a serious occupational diseases of many workers and scientists engaged in animal experimentation. Control measures depend upon characterization of allergens including airborne particles. This study measured the particle size of crude mouse urine and pelt aeroallergens generated in mouse housing rooms and compared them with mouse serum albumin, a defined major allergen. Allergens were detected by specific immunological methods. Most crude and defined allergens (74.5-86.4%) concentrated on a filter with a retention size greater than 7 microns. In distrubed air, allergen concentration increased 1.4 (albumin) to 5 (crude) fold and the proportion of small particles increased from 1.4% in calm air to 4.5% in distrubed air. This information on the generation and size distribution of aeroallergens will be important in the development of effective counter measures.  相似文献   

17.
目的了解过敏性结膜炎患儿常见过敏原及其分布特征,为预防和脱敏治疗提供依据。方法采用免疫印迹法对363例过敏性结膜炎患儿进行血清过敏原检测,并对结果进行分组比较。结果患儿中检出率居前3位的吸入性过敏原分别为尘螨(50.41%)、猫毛(3.03%)和霉菌(2.48%);检出率居前3位的食物性过敏原分别为淡水鱼(10.74%)、海鱼(7.44%)和鸡蛋白(6.34%)。吸入性过敏原(62.26%)和食物性过敏原(41.60%)总检出率比较差异有统计学意义(P0.05)。婴幼儿组、学龄前组和学龄组患儿均以尘螨为常见过敏原,其检出率分别为33.33%、52.76%和52.00%。不同年龄患儿牛奶过敏检出率比较差异有统计学意义(P0.05),婴幼儿组牛奶过敏检出率最高,为12.82%。男、女患儿过敏原阳性率比较差异无统计学意义(P0.05)。不同年龄患儿过敏原阳性率比较差异无统计学意义(P0.05)。婴幼儿组、学龄前组和学龄组患儿均以单纯吸入性过敏原和单一过敏原为常见。1月-3月为儿童过敏性结膜炎的低发季节。结论通过血清过敏原检测可明确过敏性结膜炎的过敏原。尘螨是本地区儿童过敏性结膜炎常见过敏原。  相似文献   

18.
Increased knowledge on allergenic molecules in the environmental air helps in the information on environmental air quality and in the prevention and treatment of allergies. The aim of this study is to develop and validate a new methodology for the simultaneous detection and quantification of several airborne allergens using protein microarray technology, which has been created for the clinical detection of allergens. The immunological method was performed with Immuno Solid-phase Allergen Chip (ISAC) inhibition assay. Reagents for the validation studies include the following: (1) three sera from patients allergic to grass pollen each with different IgE levels as the detection reagents, (2) recombinant Phl p 1 major allergen as the inhibitor for the inhibition assays, (3) “natural” Phl p 1 released by Phleum pratense (timothy grass) pollen grains as the “biologically” relevant aeroallergen and (4) samples of airborne pollens collected by a Multi-vial Cyclone Sampler for comparison of levels of pollen detection versus the protein allergen detection by the microarray assay. The results obtained showed that ISAC inhibition is a sensitive technique able to detect 2.1 pg/mL of Phl p 1 and the allergens released from 1 grain of natural pollen. Also, the airborne allergen samples analyzed showed a good correlation with the concentration of grass pollen in the air. The use of ISAC inhibition will greatly improve future airborne simultaneous allergen quantification, becoming a valuable option in air quality control.  相似文献   

19.
The diagnostic value of five staphylococcal allergens prepared from a single S. aureus strain by different methods and in different institutions has been tested on the experimental models of delayed, immediate and mixed (immediate and delayed) hypersensitivity in guinea pigs. The advantages of the allergens prepared in Kazan (USSR) for the detection of delayed hypersensitivity and the ultrasonicated allergen, as well as the allergen made in Czechoslovakia, for the detection of immediate hypersensitivity have been noted.  相似文献   

20.
Over the last decade, an increasing prevalence of peanut allergies was observed worldwide. Peanuts are meanwhile categorized among the most dangerous food allergens. This is particularly relevant since peanut‐derived ingredients are widely used in industrial food production. To minimize the problem of hidden food allergens causing severe anaphylactic reactions, pre‐packaged food containing peanut components needs to be classified according to European ruling since 2005. Food companies search for strategies to reduce the allergenicity of peanut‐derived food additives either by genetically altering the allergen content or by identifying peanut varieties with low levels of major allergens. In our study, we focused on peanut extracts from Indonesia that apparently contain lower levels of the major Arachis hypogaea allergen 1 (Ara h 1). Basic extracts of Virginia‐type and Indonesian peanuts were compared by 1‐ and 2‐DE. We identified more than hundred individual components in these extracts by MS and provide a high‐resolution allergen map that also includes so far unknown fragments of major peanut allergens. The reduced level of Ara h 1 associated with a significantly lower abundance of the most potent peanut allergen Ara h 2 in various Indonesian peanuts was also confirmed by Western blotting with monoclonal antibodies and sera of allergic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号