首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cholinergic gene locus (CGL) consists of the genes encoding the choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). To establish a cholinergic-specific Cre-expressing mouse, we constructed a transgene expression vector (VAChT-Cre) with 11.3 kb human CGL in which a Cre-IRES-EGFP unit was inserted in the VAChT open reading frame. The activity of Cre, whose expression was driven by the VAChT promoter, was examined by crossing a reporter mouse (CAG-CAT-Z) in which expression of LacZ is activated upon Cre-mediated recombination. Transgenic lines with the VAChT-Cre construct displayed the restricted Cre expression in a subset of cholinergic neurons in the somatomotor nuclei and medial habenular nucleus, but absent in visceromotor and other central and peripheral cholinergic neurons. Cre expression was first observed at postnatal day 7 and later detected in approximately 40-60% of somatomotor neurons. Based on the onset of Cre expression, we generated two mouse lines (two alleles; VAChT-Cre. Fast and VAChT-Cre.Slow) in which Cre expression reaches maximal levels fast and slow, respectively. The use of VAChT-Cre mice should allow us to deliver Cre to a subset of postnatal motor neurons, thereby bypassing lethality and facilitating analysis of gene function in adult motor neurons.  相似文献   

2.
3.
Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to "turn down" neuronal circuits controlling locomotion.  相似文献   

4.
The Cholinergic Gene Locus   总被引:6,自引:3,他引:3  
  相似文献   

5.
Abstract: The gene for the vesicular acetylcholine transporter (VAChT) was recently cloned and found to be located within a 5' noncoding intron of the gene for choline acetyltransferase (ChAT). There appear to be several shared and unique promoters for each gene, suggesting that control of expression of these two genes can be either coordinated or independent. Two lesions, axotomy and immunotoxin, directed at the well defined septohippocampal cholinergic pathway were used to determine VAChT and ChAT protein expression in the degenerating terminal fields in the hippocampus and the cell bodies of the medial septum nucleus after injury. Two weeks after lesioning, decreases of up to 90% in VAChT were found in the affected hippocampus by immunoblotting and immunocytochemistry, similar to ChAT activity. The number of VAChT- and ChAT-immunopositive neurons in the medial septum decreased by up to 95%. Eight weeks following axotomy, the number of VAChT- and ChAT-immunopositive neurons had increased to almost 50% in fimbria-fornix-lesioned animals, indicating coordinate reexpression of both cholinergic markers in recovered neurons. There was no recovery of either VAChT or ChAT immunoreactivity after the irreversible immunotoxin lesions. Thus, with use of immunological techniques, there appears to be coordinate expression of VAChT and ChAT in the septohippocampal pathway following either unilateral fimbria-fornix or bilateral immunotoxin lesion.  相似文献   

6.
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific marker for identifying cholinergic neurons in the central and peripheral nervous systems. The present article reviews immunohistochemical and in situ hybridization studies on the distribution of neurons expressing ChAT in the human central nervous system. Neurons with both immunoreactivity and in situ hybridization signals of ChAT are observed in the basal forebrain (diagonal band of Broca and nucleus basalis of Meynert), striatum (caudate nucleus, putamen and nucleus accumbens), cerebral cortex, mesopontine tegmental nuclei (pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parabigeminal nucleus), cranial motor nuclei and spinal motor neurons. The cerebral cortex displays regional and laminal differences in the distribution of neurons with ChAT. The medial septal nucleus and medial habenular nucleus contain immunoreactive neurons for ChAT, which are devoid of ChAT mRNA signals. This is probably because there is a small number of cholinergic neurons with a low level of ChAT gene expression in these nuclei of human. Possible connections and speculated functions of these neurons are briefly summarized.  相似文献   

7.
8.
Abstract : Choline acetyltransferase (ChAT) is a specific phenotypic marker of cholinergic neurons. Previous reports showed that different upstream regions of the ChAT gene are necessary for cell type-specific expression of reporter genes in cholinergic cell lines. The identity of the mouse ChAT promoter region controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo is not known. We characterized a promoter region of the mouse ChAT gene in transgenic mice, using β-galactosidase ( LacZ ) as a reporter gene. A 3,402-bp segment from the 5'-untranslated region of the mouse ChAT gene (from -3,356 to +46, +1 being the translation initiation site) was sufficient to direct the expression of LacZ to selected neurons of the nervous system ; however, it did not provide complete cholinergic specificity. A larger fragment (6,417 bp, from -6,371 to +46) of this region contains the requisite regulatory elements that restrict expression of the LacZ reporter gene only in cholinergic neurons of transgenic mice. This 6.4-kb DNA fragment encompasses 633 bp of the 5'-flanking region of the mouse vesicular acetylcholine transporter (VAChT), the entire open reading frame of the VAChT gene, contained within the first intron of the ChAT gene, and sequences upstream of the start coding sequences of the ChAT gene. This promoter will allow targeting of specific gene products to cholinergic neurons to evaluate the mechanisms of diseases characterized by dysfunction of cholinergic neurons and will be valuable in design strategies to correct those disorders.  相似文献   

9.
10.
To identify cholinergic neurons, we isolated a choline acetyltransferase (Ci-ChAT) gene from Ciona intestinalis by PCR methods. In the cloning process, we also obtained the gene encoding the vesicular acetylcholine transporter (Ci-vAChTP). These two genes shared the same 5'-UTR sequence as well as similar expression patterns. In both cases, the gene expression was first detected by whole-mount in situ hybridization in the anterior-dorsal region of the caudal nerve cord at the early tailbud stage. In the larva, the expression was seen in several cells of the visceral ganglion. These results suggest that ascidian larval motor neurons exist in the visceral ganglion.  相似文献   

11.
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. Cholinergic sympathetic neurons are characterized by the expression of choline acetyl transferase (ChAT), vesicular acetylcholine transporter (VAChT) and the vasoactive intestinal peptide (VIP). To investigate the role of cytokine growth factor family members in the development of cholinergic sympathetic neurons, we interfered in vivo with the function of the subclass of cytokine receptors that contains LIFRbeta as essential receptor subunit. Expression of LIFRbeta antisense RNA interfered with LIFRbeta expression and strongly reduced the developmental induction of VIP expression. By contrast, ganglion size and the number of ChAT-positive cells were not reduced. These results demonstrate a physiological role of cytokines acting through LIFRbeta-containing receptors in the control of VIP expression in sympathetic neurons.  相似文献   

12.
S M Efange 《FASEB journal》2000,14(15):2401-2413
Validation of the vesicular acetylcholine transporter (VAChT) and the neuronal vesicular monoamine transporter (VMAT2) as important molecular targets in the cholinergic and dopamine neurons, respectively, has sparked interest in the development of radiotracers for studying these markers in vitro and in vivo. Currently, a number of selective high-affinity radiotracers are available for studying these targets in vivo with positron emission tomography (PET) or single photon emission computed tomography (SPECT). PET studies of VMAT2 in neuropathology reveal changes in the density of this marker that can be verified independently. Similarly, in vivo studies with VAChT ligands suggest that the latter are potentially useful in detecting cholinergic lesions in vivo; however, additional development is required to fully realize the potential of these radioligands.  相似文献   

13.
Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.  相似文献   

14.
Expression of the cholinergic gene locus in the rat placenta   总被引:5,自引:2,他引:3  
High amounts of acetylcholine (ACh) and its synthesising enzyme choline acetyltransferase (ChAT) have been detected in the placenta. Since the placenta is not innervated by extrinsic or intrinsic cholinergic neurons, placental ACh and ChAT originate from non-neuronal sources. In neurons, cytoplasmic ACh is imported into synaptic vesicles by the vesicular acetylcholine transporter (VAChT), and released through vesicular exocytosis. In view of the coordinate expression of VAChT and ChAT from the cholinergic gene locus in neurons, we asked whether VAChT is coexpressed with ChAT in rat placenta, and investigated this issue by means of RT-PCR, in situ hybridisation, western blot and immunohistochemistry. Messenger RNA and protein of the common type of ChAT (cChAT), its splice variant peripheral ChAT (pChAT), and VAChT were detected in rat placenta with RT-PCR and western blot. ChAT in situ hybridisation signal and immunoreactivity for cChAT and pChAT were observed in nearly all placental cell types, while VAChT mRNA and immunolabelling were detected in the trophoblast, mesenchymal cells and the visceral yolk sac epithelial cells. While ChAT is nearly ubiquitously expressed in rat placenta, VAChT immunoreactivity is localised cell type specifically, implying that both vesicular and non-vesicular ACh release machineries prevail in placental cell types.  相似文献   

15.
16.
We described a family of nicotinic acetylcholine receptor (nAChR) subunits underlying cholinergic transmission in the central nervous system (CNS) of the mollusc Lymnaea stagnalis. By using degenerate PCR cloning, we identified 12 subunits that display a high sequence similarity to nAChR subunits, of which 10 are of the alpha-type, 1 is of the beta-type, and 1 was not classified because of insufficient sequence information. Heterologous expression of identified subunits confirms their capacity to form functional receptors responding to acetylcholine. The alpha-type subunits can be divided into groups that appear to underlie cation-conducting (excitatory) and anion-conducting (inhibitory) channels involved in synaptic cholinergic transmission. The expression of the Lymnaea nAChR subunits, assessed by real time quantitative PCR and in situ hybridization, indicates that it is localized to neurons and widespread in the CNS, with the number and localization of expressing neurons differing considerably between subunit types. At least 10% of the CNS neurons showed detectable nAChR subunit expression. In addition, cholinergic neurons, as indicated by the expression of the vesicular ACh transporter, comprise approximately 10% of the neurons in all ganglia. Together, our data suggested a prominent role for fast cholinergic transmission in the Lymnaea CNS by using a number of neuronal nAChR subtypes comparable with vertebrate species but with a functional complexity that may be much higher.  相似文献   

17.
18.
The cholinergic gene locus (CGL) was first identified in 1994 as the site (human chromosome 10q11.2) at which choline acetyltransferase and a functional vesicular acetylcholine transporter are co-localized. Here, we present recent neuroanatomical, developmental, and evolutionary insights into the chemical coding of cholinergic neurotransmission that have been gleaned from the study of the CGL, and its protein products VAChT and ChAT, which comprise a synthesis-sequestration pathway that functionally defines the cholinergic phenotype.

Résumé

Le locus génétique cholinergique (cholinergic gene locus, CGL) a été identifié en 1994 et regroupe les gènes de la choline acétyltransférase et d'un récepteur vésiculaire d'acétylcholine (chromosome humain 10q11.2). Nous présentons ici des données sur la neuroanatomie, le développement et l'évolution de la neurotransmission cholinergique obtenus à partir de l'étude du CGL et de ses produits protéiques, VAChT et ChAT: ce système de synthèse-séquestration définit fonctionnellement le phénotype cholinergique.  相似文献   

19.
The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号