首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Acyl-coenzyme A:monoacylglycerol acyltransferase 3 (MGAT3) is a member of the MGAT family of enzymes that catalyze the synthesis of diacylglycerol (DAG) from monoacylglycerol (MAG), a committed step in dietary fat absorption. Although named after the initial identification of its MGAT activity, MGAT3 shares higher sequence homology with acyl-coenzyme A:diacylglycerol acyltransferase 2 (DGAT2) than with other MGAT enzymes, suggesting that MGAT3 may also possess significant DGAT activity. This study compared the catalytic properties of MGAT3 with those of MGAT1 and MGAT2 enzymes using both MAG and DAG as substrates. Our results showed that in addition to the expected MGAT activity, the recombinant MGAT3 enzyme expressed in Sf-9 insect cells displayed a strong DGAT activity relative to that of MGAT1 and MGAT2 enzymes in the order MGAT3 > MGAT1 > MGAT2. In contrast, none of the three MGAT enzymes recognized biotinylated acyl-CoA or MAG as a substrate. Although MGAT3 possesses full DGAT activity, it differs from DGAT1 in catalytic properties and subcellular localization. The MGAT3 activity was sensitive to inhibition by the presence of 1% CHAPS, whereas DGAT1 activity was stimulated by the detergent. Consistent with high sequence homology with DGAT2, the MGAT3 enzyme demonstrated a similar subcellular distribution pattern to that of DGAT2, but not DGAT1, when expressed in COS-7 cells. Our data suggest that MGAT3 functions as a novel triacylglycerol (TAG) synthase that catalyzes efficiently the two consecutive acylation steps in TAG synthesis.  相似文献   

2.
Triacylglycerol (TG) is a storage lipid which serves as an energy reservoir and a source of signalling molecules and substrates for membrane biogenesis. TG is essential for many physiological processes and its metabolism is widely conserved in nature. Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the final step in the sn-glycerol-3-phosphate pathway leading to TG. DGAT activity resides mainly in two distinct membrane bound polypeptides, known as DGAT1 and DGAT2 which have been identified in numerous organisms. In addition, a few other enzymes also hold DGAT activity, including the DGAT-related acyl-CoA:monoacylglycerol acyltransferases (MGAT). Progress on understanding structure/function in DGATs has been limited by the lack of detailed three-dimensional structural information due to the hydrophobic properties of theses enzymes and difficulties associated with purification. This review examines several aspects of DGAT and MGAT genes and enzymes, including current knowledge on their gene structure, expression pattern, biochemical properties, membrane topology, functional motifs and subcellular localization. Recent progress in probing structural and functional aspects of DGAT1 and DGAT2, using a combination of molecular and biochemical techniques, is emphasized. Biotechnological applications involving DGAT enzymes ranging from obesity therapeutics to oilseed engineering are also discussed.  相似文献   

3.
4.
DGAT相关基因研究进展   总被引:8,自引:0,他引:8  
马海明  施启顺  柳小春 《遗传学报》2005,32(12):1327-1332
DGAT是一种甘油酰基转移酶(Diacylgycerol Acyltransferase,DGAT),该酶与脂肪代谢、脂类在组织中的沉积有很大关系,它的主要作用机制是使二酰甘油加上脂肪酸酰基形成三酰甘油。编码该酶的基因有DGAT1和GAAT2,前者属于ACAT基因家族,后者属于MGAT1基因家族。本文综述了动物DGAT相关基因定位、结构、生物学效应及其多态性与生产性能的关系。  相似文献   

5.
《Journal of lipid research》2017,58(6):1091-1099
In mammals, ether lipids exert a wide spectrum of signaling and structural functions, such as stimulation of immune responses, anti-tumor activities, and enhancement of sperm functions. Abnormal accumulation of monoalkyl-diacylglycerol (MADAG) was found in Wolman's disease, a human genetic disorder defined by a deficiency in lysosomal acid lipase. In the current study, we found that among the nine recombinant human lipid acyltransferases examined, acyl-CoA:diacylglycerol acyltransferase (DGAT)1, DGAT2, acyl-CoA:monoacylglycerol acyltransferase (MGAT)2, MGAT3, acyl-CoA:wax-alcohol acyltransferase 2/MFAT, and DGAT candidate 3 were able to use 1-monoalkylglycerol (1-MAkG) as an acyl acceptor for the synthesis of monoalkyl-monoacylglycerol (MAMAG). These enzymes demonstrated different enzymatic turnover rates and relative efficiencies for the first and second acylation steps leading to the synthesis of MAMAG and MADAG, respectively. They also exhibited different degrees of substrate preference when presented with 1-monooleoylglycerol versus 1-MAkG. In CHO-K1 cells, treatment with DGAT1 selective inhibitor, XP-620, completely blocked the synthesis of MADAG, indicating that DGAT1 is the predominant enzyme responsible for the intracellular synthesis of MADAG in this model system. The levels of MADAG in the adrenal gland of DGAT1 KO mice were reduced as compared with those of the WT mice, suggesting that DGAT1 is a major enzyme for the synthesis of MADAG in this tissue. Our findings indicate that several of these lipid acyltransferases may be able to synthesize neutral ether lipids in mammals.  相似文献   

6.
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, a precursor of triacylglycerol. In the intestine, MGAT plays a major role in the absorption of dietary fat by catalyzing the resynthesis of triacylglycerol in enterocytes. This resynthesis is required for the assembly of lipoproteins that transport absorbed fat to other tissues. Despite intense efforts, a gene encoding an intestinal MGAT has not been found. Previously, we identified a gene encoding MGAT1, which in mice is expressed in the stomach, kidney, adipose tissue, and liver but not in the intestine. We now report the identification of homologous genes in humans and mice encoding MGAT2. Expression of the MGAT2 cDNA in either insect or mammalian cells markedly increased MGAT activity in cell membranes. MGAT activity was proportional to the level of MGAT2 protein expressed, and the amount of diacylglycerol produced depended on the concentration of MGAT substrates (fatty acyl CoA or monoacylglycerol). In humans, the MGAT2 gene is highly expressed in the small intestine, liver, stomach, kidney, colon, and white adipose tissue; in mice, it is expressed predominantly in the small intestine. The discovery of the MGAT2 gene will facilitate studies to determine the functional role of MGAT2 in fat absorption in the intestine and to determine whether blocking MGAT activity in enterocytes is a feasible approach to inhibit fat absorption and treat obesity.  相似文献   

7.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of the four intestinal membrane bound acyltransferases implicated in dietary fat absorption. Recently, it was found that, in addition to acylating diacylglycerol (DAG), DGAT1 also possesses robust enzymatic activity for acylating monoacylglycerol (MAG) (Yen, C. L., Monetti, M., Burri, B. J., and Farese, R. V., Jr. (2005) J. Lipid Res. 46, 1502-1511). In the current paper, we have conducted a detailed characterization of this reaction in test tube, intact cell culture, and animal models. Enzymatically, we found that triacylglycerol (TAG) synthesis from MAG by DGAT1 does not behave according to classic Michaelis-Menten kinetics. At low concentrations of 2-MAG (<50 microm), the major acylation product by DGAT1 was TAG; however, increased concentrations of 2-MAG (50-200 microm) resulted in decreased TAG formation. This unique product/substrate relationship is similar to MGAT3 but distinct from DGAT2 and MGAT2. We have also found that XP620 is an inhibitor that selectively inhibits the acylation of MAG by DGAT1 (IC(50) of human DGAT1: 16.6+/-4.0 nM (MAG as substrate) and 1499+/-318 nM (DAG as substrate); IC(50) values of human DGAT2, MGAT2, and MGAT3 are >30,000 nM). Using this pharmacological tool, we have shown that approximately 76 and approximately 89% of the in vitro TAG synthesis initiated from MAG is mediated by DGAT1 in Caco-2 cell and rat intestinal mucosal membranes, respectively. When applied to intact cultured cells, XP620 substantially decreased but did not abolish apoB secretion in differentiated Caco-2 cells. It also decreased TAG and DAG syntheses in primary enterocytes. Last, when delivered orally to rats, XP620 decreased absorption of orally administered lipids by approximately 50%. Based on these data, we conclude that the acylation of acylglycerols by DGAT1 is important for dietary fat absorption in the intestine.  相似文献   

8.
Acyl-CoA:diacylglycerol acyltransferases (DGATs) catalyze the last step in triglyceride (TG) synthesis. The genes for two DGAT enzymes, DGAT1 and DGAT2, have been identified. To examine the roles of liver DGAT1 and DGAT2 in TG synthesis and very low density lipoprotein (VLDL) secretion, liver DGAT1- and DGAT2-overexpressing mice were created by adenovirus-mediated gene transfection. DGAT1-overexpressing mice had markedly increased DGAT activity in the presence of the permeabilizing agent alamethicin. This suggests that DGAT1 possesses latent DGAT activity on the lumen of the endoplasmic reticulum. DGAT1-overexpressing mice showed increased VLDL secretion, resulting in increased gonadal (epididymal or parametrial) fat mass but not subcutaneous fat mass. The VLDL-mediated increase in gonadal fat mass might be due to the 4-fold greater expression of the VLDL receptor protein in gonadal fat than in subcutaneous fat. DGAT2-overexpressing mice had increased liver TG content, but VLDL secretion was not affected. These results indicate that DGAT1 but not DGAT2 has a role in VLDL synthesis and that increased plasma VLDL concentrations may promote obesity, whereas increased DGAT2 activity has a role in steatosis.  相似文献   

9.
Acyl-CoA:monoacylglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze the two consecutive steps in the synthesis of triacylglycerol, a key process required for dietary fat absorption into the enterocytes of the small intestine. In this report, we investigated the tendency of MGAT2 to form an enzyme complex with DGAT1 and DGAT2 in intact cells. We demonstrated that in addition to the 38-kDa monomer of the MGAT2 enzyme predicted by its peptide sequence, a 76-kDa moiety was detected in SDS-PAGE without reducing agent and heat inactivation. The 76-kDa MGAT2 moiety was greatly enhanced by treatment with a cross-linking reagent in intact cells. Additionally, the cross-linking reagent dose-dependently yielded a band corresponding to the tetramer (152 kDa) in SDS-PAGE, suggesting that the MGAT2 enzyme primarily functions as a homotetrameric protein and as a tetrameric protein. Likewise, DGAT1 also forms a homodimer under nondenaturing conditions. When co-expressed in COS-7 cells, MGAT2 heterodimerized with DGAT1 without treatment with a cross-linking reagent. MGAT2 also co-eluted with DGAT1 on a gel filtration column, suggesting that the two enzymes form a complex in intact cells. In contrast, MGAT2 did not heterodimerize with DGAT2 when co-expressed in COS-7 cells, despite high sequence homology between the two enzymes. Furthermore, systematic deletion analysis demonstrates that N-terminal amino acids 35–80 of DGAT1, but not a signal peptide at the N terminus of MGAT2, is required for the heterodimerization. Finally, co-expression of MGAT2 with DGAT1 significantly increased lipogenesis in COS-7 cells, indicating the functional importance of the dimerization.  相似文献   

10.

Background

Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists.

Methodology/Principal Findings

We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor.

Conclusions/Significance

This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.  相似文献   

11.
Acyl-CoA:monoacylglycerol acyltransferase (MGAT) plays an important role in dietary fat absorption by catalyzing a rate-limiting step in the re-synthesis of diacylglycerols in enterocytes. The present study reports further characterization of MGAT2, a newly identified intestinal MGAT (Cao, J., Lockwood, J., Burn, P., and Shi, Y. (2003) J. Biol. Chem. 278, 13860-13866) for its substrate specificity, requirement for lipid cofactors, optimum pH and Mg2+, and other intrinsic properties. MGAT2 enzyme expressed in COS-7 cells displayed a broad range of substrate specificity toward fatty acyl-CoA derivatives and monoacylglycerols, among which the highest activities were observed with oleoyl-CoA and rac-1-monolauroylglycerol, respectively. MGAT2 appeared to acylate monoacylglycerols containing unsaturated fatty acyls in preference to saturated ones. Lipid cofactors that play roles in signal transduction were shown to modulate MGAT2 activities. In contrast to oleic acid and sphingosine that exhibited inhibitory effects, phosphatidylcholine, phosphatidylserine, and phosphatidic acid stimulated MGAT2 activities. Using recombinant murine MGAT2 expressed in Escherichia coli, we demonstrated conclusively that MGAT2 also possessed an intrinsic acyl-CoA:diacylglycerol acyltransferase (DGAT) activity, which could provide an alternative pathway for triacylglycerol synthesis in the absence of DGAT. In contrast to the inhibitory effect on MGAT2 activities, nonionic and zwitterionic detergents led to a striking activation of DGAT activity of the human DGAT1 expressed in mammalian cells, which further distinguished the behaviors of the two enzymes. The elucidation of properties of MGAT2 will facilitate future development of compounds that inhibit dietary fat absorption as a means to treat obesity.  相似文献   

12.
We have identified a cDNA from the nematode worm Caenorhabditis elegans that encodes an acyl-CoA:diacylglycerol acyltransferase (DGAT). Its expression in Saccharomyces cerevisiae resulted in an increase both in triacylglycerol content and in microsomal oleyl-CoA:diacylglycerol acyltransferase activity. Such effects were similar to those of characterized plant DGAT genes. This is the first DGAT gene isolated from an invertebrate. The phylogenetic relationships between DGATs and animal and yeast acyl-CoA:sterol acyltransferases are illustrated.  相似文献   

13.
Acyl-CoA:monoacylglycerol transferase (MGAT) plays a predominant role in dietary fat absorption in the small intestine, where it catalyzes the first step of triacylglycerol resynthesis in enterocytes for chylomicron formation and secretion. Although the mouse small intestine exhibits the highest MGAT enzyme activity among all of the tissues studied, the gene encoding the enzyme has not been identified so far. In the present studies, we report the identification and characterization of a mouse intestinal MGAT, MGAT2. Transient expression of MGAT2 in AV-12, COS-7, and Caco-2 cells led to a more than 70-, 30-, and 35-fold increase in the synthesis of diacylglycerol, respectively. MGAT2 expressed in mammalian cells can catalyze the acylation of rac-1-, sn-2-, and sn-3-monoacylglycerols, and the enzyme prefers monoacylglycerols containing unsaturated fatty acyls as substrates. MGAT2 also demonstrates weak DGAT activity, which can be distinguished from its MGAT activity by detergent treatment that abolishes DGAT but not MGAT activity. We also analyzed the biochemical features of MGAT2 and demonstrated homogenate protein-, time-, and substrate concentration-dependent MGAT enzyme activity in transiently transfected COS-7 cells. Northern blot analysis indicates that the mouse MGAT2 is most abundantly expressed in the small intestine, suggesting that MGAT2 may play an important role in dietary fat absorption.  相似文献   

14.
The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria.  相似文献   

15.
二酰基甘油酰基转移酶(DGAT)是甘油三酯(TG)合成的关键酶,催化TG合成的最后一步。DGAT有两种亚型:DGAT1和DGAT2。DGAT1缺陷的小鼠对胰岛素和瘦素的敏感性增加且可以抵抗饮食诱导的肥胖;DGAT2功能下调可明显降低肥胖小鼠肝脏TG含量,改善脂肪肝的形成。DGAT抑制剂可改善动物模型的高脂血症和脂肪肝。因此,DGAT有可能成为防治肥胖、糖尿病等代谢性疾病的新的药物靶标。该文详细阐述了DGAT的生理功能研究及其抑制剂的研究进展。  相似文献   

16.
Acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol using 2-monoacylglycerol and fatty acyl coenzyme A. This enzymatic reaction is believed to be an essential and rate-limiting step for the absorption of fat in the small intestine. Although the first MGAT-encoding cDNA, designated MGAT1, has been recently isolated, it is not expressed in the small intestine and hence cannot account for the high intestinal MGAT enzyme activity that is important for the physiology of fat absorption. In the current study, we report the identification of a novel MGAT, designated MGAT3, and present evidence that it fulfills the criteria to be the elusive intestinal MGAT. MGAT3 encodes a approximately 36-kDa transmembrane protein that is highly homologous to MGAT1 and -2. In humans, expression of MGAT3 is restricted to gastrointestinal tract with the highest level found in the ileum. At the cellular level, recombinant MGAT3 is localized to the endoplasmic reticulum. Recombinant MGAT3 enzyme activity produced in insect Sf9 cells selectively acylates 2-monoacylglycerol with higher efficiency than other stereoisomers. The molecular identification of MGAT3 will facilitate the evaluation of using intestinal MGAT as a potential point of intervention for antiobesity therapies.  相似文献   

17.
The final step of triacylglycerol biosynthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. The two known DGATs, DGAT1 and DGAT2, are encoded by unrelated genes. Although both DGAT1 and DGAT2 knockout mice have reduced tissue triacylglycerol contents, they have disparate phenotypes, prompting us to investigate whether the two enzymes have unrecognized functional differences. We now report that DGAT1 exhibits additional acyltransferase activities in vitro, including those of acyl CoA:monoacylglycerol acyltransferase (MGAT), wax monoester and wax diester synthases, and acyl CoA:retinol acyltransferase (ARAT), which catalyze the synthesis of diacylglycerols, wax esters, and retinyl esters, respectively. These activities were demonstrated in in vitro assays with membranes from insect cells or homogenates from COS7 cells overexpressing DGAT1. Wax synthase and ARAT activities were also demonstrated in intact COS7 cells expressing DGAT1. Additionally, cells and tissues from DGAT1-deficient mice exhibited reduced ARAT activity, and the mice had increased levels of unesterified retinol in their livers on a high-retinol diet. Our findings indicate that DGAT1 can utilize a variety of acyl acceptors as substrates in vitro and suggest that these activities may be relevant to the in vivo functions of DGAT1.  相似文献   

18.
Monoacylglycerol O-acyltransferase 2 (MGAT2) catalyzes the synthesis of diacylglycerol (DG), a triacylglycerol precursor and potential peripheral target for novel anti-obesity therapeutics. High-throughput screening identified lead compounds with MGAT2 inhibitory activity. Through structural modification, a potent, selective, and orally bioavailable MGAT2 inhibitor, compound A (compA), was discovered. CompA dose-dependently inhibited postprandial increases in plasma triglyceride (TG) levels. Metabolic flux analysis revealed that compA inhibited triglyceride/diacylglycerol resynthesis in the small intestine and increased free fatty acid and acyl-carnitine with shorter acyl chains than originally labelled fatty acid. CompA decreased high-fat diet (HFD) intake in C57BL/6J mice. MGAT2-null mice showed a similar phenotype as compA-treated mice and compA did not suppress a food intake in MGAT2 KO mice, indicating that the anorectic effects were dependent on MGAT2 inhibition. Chronic administration of compA significantly prevented body weight gain and fat accumulation in mice fed HFD. MGAT2 inhibition by CompA under severe diabetes ameliorated hyperglycemia and fatty liver in HFD-streptozotocin (STZ)-treated mice. Homeostatic model assessments (HOMA-IR) revealed that compA treatment significantly improved insulin sensitivity. The proximal half of the small intestine displayed weight gain following compA treatment. A similar phenomenon has been observed in Roux-en-Y gastric bypass-treated animals and some studies have reported that this intestinal remodeling is essential to the anti-diabetic effects of bariatric surgery. These results clearly demonstrated that MGAT2 inhibition improved dyslipidemia, obesity, and diabetes, suggesting that compA is an effective therapeutic for obesity-related metabolic disorders.  相似文献   

19.
Studies involving the cloning and disruption of the gene for acyl-CoA:diacylglycerol acyltransferase (DGAT) have shown that alternative mechanisms exist for triglyceride synthesis. In this study, we cloned and characterized a second mammalian DGAT, DGAT2, which was identified by its homology to a DGAT in the fungus Mortierella rammaniana. DGAT2 is a member of a gene family that has no homology with DGAT1 and includes several mouse and human homologues that are candidates for additional DGAT genes. The expression of DGAT2 in insect cells stimulated triglyceride synthesis 6-fold in assays with cellular membranes, and DGAT2 activity was dependent on the presence of fatty acyl-CoA and diacylglycerol, indicating that this protein is a DGAT. Activity was not observed for acyl acceptors other than diacylglycerol. DGAT2 activity was inhibited by a high concentration (100 mm) of MgCl(2) in an in vitro assay, a characteristic that distinguishes DGAT2 from DGAT1. DGAT2 is expressed in many tissues with high expression levels in the liver and white adipose tissue, suggesting that it may play a significant role in mammalian triglyceride metabolism.  相似文献   

20.
《Genomics》2021,113(4):2392-2399
DGAT2 (acyl CoA:diacylglycerol acyltransferase 2) is a key and rate-limiting enzyme that catalyzes the final step of triglyceride (TG) synthesis. In this study, hybrid tilapia were generated from Nile tilapia (♀) and blue tilapia (♂) crossing. The TG content levels in the liver of these tilapia were measured. The results showed that the TG content was higher in the hybrid tilapia. In addition, protein and mRNA expression levels in the tilapia livers were determined. Higher hepatic mRNA and protein expression of DGAT2 in the hybrid fish was found. A luciferase reporter assay with HEK293T cells revealed that miRNA-19a-5p targeted the 3′UTR of DGAT2, suggesting a direct regulatory mechanism. Using qRT-PCR, we found that DGAT2 mRNA levels had a negative correlation with miRNA-19a-5p expression in Nile tilapia and hybrid. Taken together, these findings provide evidence that miRNA-19a-5p is involved in TG synthesis in the regulation of lipid metabolism in tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号