首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments.  相似文献   

2.
Variability in recombination frequency was reported in the Iowa Stiff Stalk Synthetic. The objectives of the present research were to verify the differences in recombination frequency among individuals in the Iowa Stiff Stalk Synthetic maize population and to determine if the recombination frequency differences persisted among the S1 progeny. Testcrosses to measure male recombination frequency on three chromosomes (4, su1-c2; 5, a2-bt1-pr1; 9, sh1-bz1-wx1) were repeated for eight S0 individuals. Recombination frequencies were repeatably divergent among those individuals which were selected based on high or low recombination frequencies on specific chromosomes. Individuals which had been selected for long and short total map distances across the three chromosome regions produced repeatably divergent recombination frequencies only at the su1-c2 region. The recombination frequencies of the S1 lines, derived from the S0 individuals which had the most divergent recombination frequencies on a single chromosome, were significantly different. The broadsense heritability estimates derived from the regression of six S1 lines on six S0 individuals ranged from 0.69 to 0.20 for the five chromosome regions. We conclude that genetic differences for recombination frequency exist in this population and that modification by selection should be possible.  相似文献   

3.
Summary A Neurospora crassa mutation, mei-2, affecting meiosis and mutagen sensitivity, was characterized for its effect on meiotic recombination and chromosome pairing. Results from homozygous mei-2 crosses involving distant markers on the same chromosome demonstrated a drastic reduction in meiotic recombination. However, mitotic recombination continued to occur. Cytological observations indicated that pairing of homologous chromosomes in zygotene was greatly reduced or absent, resulting in aberrant segregation at anaphase I and often at subsequent divisions as well. The few mature ascospores produced were frequently disomic for one or more chromosomes.  相似文献   

4.
J. N. De Vries 《Genetica》1985,68(1):47-58
Telotertiary compensating trisomics (CTs) of rye (Secale cereale L.), in which the absence of one normal chromosome is compensated by the presence of a telocentric and a translocation chromosome, were isolated in progenies of telocentric translocation trisomics, and telo-substituted translocation heterozygotes, respectively. These two sources were obtained from crosses between five interchanges of the Wageningen translocation tester set, and telocentric normal trisomics (for IRS, IRL and 5RS), or telocentric substitutions (for IR and 3R), respectively. In test crosses with normal male plants, CTs were identified using either critical meiotic configurations, the segregation of karyotypes in selfed trisomic progenies, or the segregation of a marker located on the compensated chromosome. CT yields ranged from 0.0–6.3%. These frequencies were concluded to be determined mainly by the frequency of the exchanged segment of the translocation chromosome involved in the CT complex being associated at first meiotic metaphase (MI) in the source plants. The lower association frequencies result in the higher CT yields. The correlation between high association frequency of this segment and low CT yield suggests that infrequent adjacent orientation of one critical segment is also responsible for the origin of CTs. This agrees with cytogenetic theory.  相似文献   

5.
Robertsonian chromosomes are metacentric chromosomes formed by the joining of two telocentric chromosomes at their centromere ends. Many Robertsonian chromosomes of the mouse suppress genetic recombination near the centromere when heterozygous. We have analyzed genetic recombination and meiotic pairing in mice heterozygous for Robertsonian chromosomes and genetic markers to determine (1) the reason for this recombination suppression and (2) whether there are any consistent rules to predict which Robertsonian chromosomes will suppress recombination. Meiotic pairing was analyzed using synaptonemal complex preparations. Our data provide evidence that the underlying mechanism of recombination suppression is mechanical interference in meiotic pairing between Robertsonian chromosomes and their telocentric partners. The fact that recombination suppression is specific to individual Robertsonian chromosomes suggests that the pairing delay is caused by minor structural differences between the Robertsonian chromosomes and their telocentric homologs and that these differences arise during Robertsonian formation. Further understanding of this pairing delay is important for mouse mapping studies. In 10 mouse chromosomes (3, 4, 5, 6, 8, 9, 10, 11, 15 and 19) the distances from the centromeres to first markers may still be underestimated because they have been determined using only Robertsonian chromosomes. Our control linkage studies using C-band (heterochromatin) markers for the centromeric region provide improved estimates for the centromere-to-first-locus distance in mouse chromosomes 1, 2 and 16.  相似文献   

6.
Sybenga J  Verhaar H  Botje DG 《Genetics》2008,178(4):1915-1926
In telocentric trisomics (telotrisomics) of organisms in which the chromosomes normally have two distinct arms, a single chromosome arm with a centromere is present in addition to a complete diploid set of chromosomes. It is the simplest form of polysomy and suitable for analyzing meiotic pairing and recombination patterns in situations where chromosomes compete for pairing. When no suitable meiotic chromosome markers are available, four metaphase I configurations can be distinguished. Their relative frequencies are indicative of the pairing and recombination patterns. In short arm (1RS) telotrisomics of chromosome 1R of rye (Secale cereale) we observed great differences in pairing and recombination patterns among spikes from different tillers and clones of the same plants. Anthers within spikes were only very rarely different. We analyzed a large number of genotypes, including inbreds as well as hybrids. The effects of genetic and environmental conditions on heterogeneity, if any, were limited. Considering that the reproductive tissue of a spike is derived from one primordial cell, it seems that at the start of sexual differentiation there was variation among cells in chromosomal control, which at meiosis determines pairing and crossing-over competence. We suggest that it is an epigenetic system that rigidly maintains this pattern through generative differentiation. In competitive situations the combination most competent for pairing will pair preferentially, forming specific meiotic configurations with different frequencies for different spikes of the same plant. This would explain the heterogeneity between spikes and the homogeneity within spikes. The epigenetic system could involve chromatin conformation or DNA methylation. There were no signs of heterochromatinization.  相似文献   

7.
Summary The genes controlling the synthesis of the high-molecular-weight subunits of glutenin on the long arms of chromosomes 1A and IB were mapped to the -gliadin genes on the short arms by analysing the progeny of three test crosses by sodium dodecyl sulphate, polyacrylamide-gel electrophoresis. Only very weak linkages were detected: the percentage recombination ranged from 39% to 47% and as the values did not significantly differ from each other, the data was pooled. A mean recombination of 43% was obtained and the map distance between glutenin and gliadin genes was calculated to be 66 cM. The analysis of three crosses involving telocentric lines revealed that the glutenin subunit genes on chromosomes 1A, IB and ID are tightly linked to the centromere, the mean map distance being 9.0 cM.  相似文献   

8.
Summary Estimates of allelic recombination frequencies are shown to have coefficients of variation of between 20 and 40%. In Coprinus this is true of both high and low recombination frequencies and is also true when the alleles involved show marker effect. This variability is not confined to Coprinus but is a general feature of both meiotic and mitotic allelic recombination. Experimental errors do not make a major contribution to the observed variation althought it has the nature of a sampling variation. It is suggested that the variation arises from the diversity of ways in which the initial errors introduced by hybrid DNA formation can be resolved during the excision-repair stages of recombination. If the enzymes responsible for these processes are present in low concentrations then much latitude can be anticipated in the way the same errors are dealt with by separate, though isogenic, diploid or dikaryotic organisms. Each separate cross is thus interpreted as providing an estimate of the recombination frequency which is but a sample from a varied population of possible estimates of the same recombination frequency. Each pair of alleles exhibits a recombination frequency which, within the statistical boundaries of the general variation, is sufficiently reproducible to be described as a characteristic of them. Combinations of allelic recombination frequencies derived from pair-wise crosses fall into patterns that are sufficiently consistent for allele maps to be drawn; and, providing a sufficient number of replicate crosses have been analysed, the allele map can be shown to be statistically soundly based. Two marker effect situations are examined. One causes reduction of recombination frequency and is probably intrinsic to the mutant site itself, the other causes enhancement of recombination frequency and is due to a factor or factors distinct from the allelic mutant site in the strain in which it was first identified. When intercrossed the two effects counteract one another.  相似文献   

9.
Variability in recombination frequency has been reported in several plant populations. The objectives of the present research were to establish the range in variability in recombination among genotypes in the important corn population Iowa Stiff Stalk Synthetic and to identify individual genotypes which produced increased or decreased recombination frequencies. Approximately 150 individual S0 plants were testcrossed to measure male recombination frequency on three chromosomes: 4, sul-c2; 5, a2-btl-pr1; and 9, sh1-bz1-wx1. Although the variance component for individuals accounted for only 20–33% of the total variation, highly significant variability among individuals was present at all chromosome regions. Thus the environmental effects did not prevent measurement of differences between S0 individuals. At each chromosome region, individual genotypes with recombination frequencies at least two standard deviations above or below the population mean were isolated. Reports in the literature suggest that the variability reported here for the BSSS population should be representative of that present in other corn breeding populations. Recombination frequencies were positively correlated between adjacent regions of chromosome 9 and also between adjacent regions of chromosome 5. Recombination frequencies were positively correlated between both regions on chromosome 5 with the su1-c2 region of chromosome 4. Negative correlations were observed between chromosome 9 recombination and recombination in each region of chromosomes 4 and 5. Thus rankings of S0 individual recombination frequencies were not consistent for all three chromosomes.  相似文献   

10.
The amount of alien chromatin introgressed in eight wheat/Ae. longissima Pm13 recombinant lines, involving breakpoints on the short arms of wheat chromosomes 3B and 3D, was evaluated by cytogenetic and molecular approaches. For each line the residual homologous synaptic ability of the recombinant chromosome in its proximal wheat and distal alien portion was estimated through meiotic analyses. Subsequently, telocentric and RFLP mapping were used to assess the genetic distance from the wheat centromere to the wheat/Ae. longissima breakpoints. One 3B recombinant line was distinguished from the other four by the chromosome pairing and telocentric mapping analyses. RFLP analysis succeeded in differentiating the remaining four lines into two groups. Chromosome pairing and telocentric mapping of the three 3D recombinant lines suggested that all had distinct breakpoints. However, the RFLP data could not discriminate between the two more proximal translocations. Physical locations for some RFLP loci were determined by a comparison of genotypes and C-banding karyotypes. This showed a considerable expansion of the genetic map compared to its physical length.  相似文献   

11.
Unstable B chromosomes in Silene maritima With. (Caryophyllaceae)   总被引:1,自引:0,他引:1  
Unstable B chromosomes in Silene maritima With. (Carophyllaceae). B chromosomes have been found in 7 out of 39 populations of Silene maritima With. (Carophyllaceae) studied. These 7 populations are all from the Norfolk coast. The B chromosome is small, 0.8 μm long, telocentric and appears euchromatic. Within plants the B chromosome is highly unstable with different numbers in cells of the same root or pollen mother cells (pmcs) of an anther. The transmission of the Bs is efficient and in controlled crosses progeny plants usually have higher mean B frequencies than the B-containing parents. At metaphase I the pairing behaviour of the Bs is variable and they often appear as univalents. In general the presence of Bs in pmcs results in an increase in chiasma frequency/cell and populations with Bs have higher mean chiasma frequencies than those without Bs. Cloned plants grown under stress conditions induced by the addition of NaCl to a nutrient solution showed no difference in mean B number/cell or distribution when compared with controls grown in nutrient solution only.  相似文献   

12.
Summary Three meiosis-deficient mutants of gene mei2 (mei2-1, mei-2-2 and mei2-3) are blocked during the prophase I of meiosis, before normal pachytene. The mutant mei-2-2 is leaky and there is a partial complementation in crosses mei2-2xmei-2-1 and mei2-2xmei2-3. It has thus been possible to analyse descendants of these crosses. This analysis shows an important alteration in recombination frequencies on at least three different linkage groups. Recombination frequencies appear to be increased near the centromere and decreased in other regions of the chromosomes. This coincides with a decrease in chiasma interference. Intergenic recombination is increased in a locus located very near to the chromosome II centromere. Moreover, the relative proportion of crossovers among the recombination events is stronger than in the control. Though it is impossible at present to formulate a precise hypothesis for the action of the mei2 gene at the molecular level, it is proposed that it might well control a stage of the DNA repair or synthesis.  相似文献   

13.
Summary Only 1.4% of the double mutant recombinants expected on the basis of wild-type recombination frequencies were observed in the combined data from two-factor crosses between a gene 37 amber mutant, amB280, and eighteen different temperature sensitive mutants which were also defective in gene 37. Similar, though less extreme, deficiencies of double mutant recombinants were observed by Doermann and Parma (1968) for mutants in several other genes. In our amB280xts crosses, frequencies of wild-type recombinants were in reasonably good agreement with those expected from the map positions of the mutants determined in crosses not involving amB280. Wild-type and double mutant recombinants were found at comparable frequencies when each of three other gene 37 amber mutants was crossed to a gene 37 temperature sensitive mutant.Experiments were performed to test whether the deficiency of double mutant recombinants in the amB280xts crosses could be explained by assuming that they occurred primarily in heterozygous particles, where their expression was masked. However, no evidence in support of this explanation was found. Other possible explanations, that the deficiency of double mutants was due to their inviability or the inability of double mutant chromosomes to replicate, were also inconsistent with our observations. The hypothesis considered to most plausibly explain our evidence is that the process by which double mutant recombinant chromosomes are formed is inhibited in the vicinity of a poorly suppressed am mutation.  相似文献   

14.
Structural changes involving fragmentation and the deletion of chromosome material have resulted in the production of morphological variants of the standard B chromosomes of Myrmeleotettix maculatus. Three distinct types are described — a considerably reduced Bst chromosome with a sub-terminal centromere and a large and small telocentric fragment. In addition, the Bst chromosome can itself give rise to a small telocentric fragment. The fact that such telocentric fragments have been found only in mosaic germ lines implies a lack of stability and an inability to perpetuate themselves between generations. The non-reciprocal translocation of one such fragment onto the short arm of a metacentric autosome does little to improve the efficiency of its transmission from one generation to another. The behaviour of autosomal fragments, discovered in both the M6 and S8 chromosomes of this species, parallels that of B fragments. Only the Bst chromosomes appear both mitotically and meiotically stable.  相似文献   

15.
R. T. Surosky  B. K. Tye 《Genetics》1988,119(2):273-287
We explored the behavior of meiotic chromosomes in Saccharomyces cerevisiae by examining the effects of chromosomal rearrangements on the pattern of disjunction and recombination of chromosome III during meiosis. The segregation of deletion chromosomes lacking part or all (telocentric) of one arm was analyzed in the presence of one or two copies of a normal chromosome III. In strains containing one normal and any one deletion chromosome, the two chromosomes disjoined in most meioses. In strains with one normal chromosome and both a left and right arm telocentric chromosome, the two telocentrics preferentially disjoined from the normal chromosome. Homology on one arm was sufficient to direct chromosome disjunction, and two chromosomes could be directed to disjoin from a third. In strains containing one deletion chromosome and two normal chromosomes, the two normal chromosomes preferentially disjoined, but in 4-7% of the tetrads the normal chromosomes cosegregated, disjoining from the deletion chromosome. Recombination between the two normal chromosomes or between the deletion chromosome and a normal chromosome increased the probability that these chromosomes would disjoin, although cosegregation of recombinants was observed. Finally, we observed that a derivative of chromosome III in which the centromeric region was deleted and CEN5 was integrated at another site on the chromosome disjoined from a normal chromosome III with fidelity. These studies demonstrate that it is not pairing of the centromeres, but pairing and recombination along the arms of the homologs, that directs meiotic chromosome segregation.  相似文献   

16.
Chromosomes,DNA sequences,and evolution in salamanders of the genus Aneides   总被引:1,自引:1,他引:0  
Chromosomes and DNA sequence homologies have been studied in salamanders of the genus Aneides. The species studied included A. ferreus, flavipunctatus, lugubris, hardii and aeneus. All species have 14 chromosomes. The karyotypes of A. ferreus and A. hardii are very similar. All chromosomes are metacentric or sub-metacentric except chromosome 13 which is telocentric in A. hardii, but is represented by a telocentric and a sub-telocentric chromosome in A. ferreus. C values range from 35.2 to 46.0 pg. Salamanders from different species groups have nothing in common with respect to that fraction of their repeated DNA sequences that hybridizes in experiments involving the binding of labelled whole complementary RNA from one species to whole DNA from another species. Salamanders from the same species group (ferreus, lugubris and flavipunctatus) have about 25% in common with respect to their repetitive DNA sequences.  相似文献   

17.
A high-throughput system for the measurement of recombination frequencies in the genetic model plant, Arabidopsis thaliana, is described. It is based on 21 mono-transgenic isogenic lines harboring antibiotic resistance genes on all five chromosomes. Recombination between pairs of gene insertions in repulsion phase that confer resistance against kanamycin (kan) and hygromycin (hyg) is determined by a phenotypic assay of progeny (DART: Double Antibiotic Resistance Technique). DART allows testing for the influence of numerous environmental and genetic factors, including candidate genes, on recombination frequencies in specific genomic regions as well as the entire genome. Its usefulness is demonstrated by investigating the effects of UV treatment, different temperature and phosphorus supply regimes, and sex on recombination frequencies for all five chromosomes of A. thaliana. Electronic Publication  相似文献   

18.
J Sybenga  H Verhaar  D G A Botje 《Génome》2007,50(11):1014-1028
Telocentric trisomics (telotrisomics; one arm of a metacentric chromosome present in addition to two complete genomes) are used in theoretical studies of pairing affinities and chiasma formation in competitive situations and applied in genome analysis, gene localization, gene transfer, and breakage of close linkages. These applications require knowledge of the recombination characteristics of telotrisomics. Appropriate cytological and molecular markers and favorable chromosome morphology are not always available or applicable for quantitative analyses. We developed new mathematical models for extracting the maximum information from simple metaphase I observations. Two types of telotrisomics of the short arm of chromosome 1R of rye (Secale cereale), including several genotypes, were used as test material. In simple telotrisomics, pairing between morphologically identical complete chromosomes was more frequent than pairing between the telocentric and either of the normal chromosomes. In the telocentric substitution, morphologically identical telocentrics paired less frequently with each other than either one with the normal chromosome. Pairing partner switch was significant. Interaction between the two arms was variable. Variation within plants was considerable. Telotrisomics without markers are suitable for analyzing pairing preferences, for gene localization and gene transfer, and for breaking tight linkages, but less so for genome analysis.  相似文献   

19.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Aurora: Aurolata (AABBUU), Aurodes (AABBSS), and Aurotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Aurolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Aurodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Aurolata and in a line resulting from crosses with Aurotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

20.
Karyotypes of Diplomystes composensis and Diplomystes nahuelbutaensis were the same diploid number (n= 56).The chromosome formula for D. composensis was 16 metacentric + 24 submetacentric + 8 subtelocentric + 8 telocentric chromosomes and for D. nahuelbutaensis was 14 metacentric + 26 submetacentric + 8 subtelocentric +8 telocentric chromosomes. In contrast, the differences in the chromosomal C-banding patterns between these species was large. For instance, chromosome pairs 5,6, and 7 of D. nahuelbutaensis showed heterochromatic centromeres and pairs 23, 24, 27, and 28 were entirely heterochromotic. Diplomystes composensis showed conspicuous C-banded blocks in pairs 7, 24, and 25 (chromosome pair 7 had one heterochromatic arm, chromosome pair 24 was entirely heterochromatic, and chromosome pair 25 had heterochromatin close to centromere). Comparison with other ostariophysan karyotypes (e.g. gymnotiforms, characiforms, and cypriniforms), does not allow any conclusions about the ploesiomorphic catfish condition, because the karyotypes of the outgroups are too variable. A synapomorphy shared by characiforms, gymnotiforms, and diplomystid catfishes is the presence of more metacentric to submetacentric than substelocentric to telocentric chromosomes. Cypriniforms are more primitive because they have more subtelocentric to telocentric than metacentric to submetacentric chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号