首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activities of carboxylation enzymes were analyzed in the mycelium of the mycorrhizal fungus Amanita muscaria (L. ex Fr.) Hooker, in non-mycorrhizal short roots of Norway spruce ( Picea abies [L.] Karst.) and in myconhizas of these two partners. While pyruvale carboxylase (PC, EC 6.4.1.1) and phosphoenolpyruvate carboxykinase activities (PEPCK.EC 4.1.1.49) could be detected in the mycelium of A. muscaria , phosphoenolpyruvate carboxyknase (PEPC, EC 4.1.1.31) was only active in root tissue. In A. muscaria , PC activity was generally low (around 10 nmol mg−tprotein min) but PEPCK activity was above 250 nmol mg−1 protein min−1. Mycorrhizal development on short roots decreased PEPC activity by more than 75%, although dilution by the fungal biomass in mycorrhizas was only 35%. This reduction in activity was paralleled by a decreased content of PEPC protein. By means of micro-analytical methods it was shown that PEPC activity was lowest in the central zones of the mycorrhizas, Whereas PEPC activity was highest in the corresponding central sections in non-mycorrhizal short roots. 14CO2 labelling, on the other hand, revealed that in vivo CO2 fixation was higher in mycorrhizas compared to non-mycorrhizal short roots. It is concluded that fungal carboxylases (probably PEPCK) are important for anaplerotic CO2 fixation during nitrogen assimilation in mycorrhizas of Norway spruce.  相似文献   

2.
3.
The C(4) photosynthetic pathway involves the assimilation of CO(2) by phosphoenolpyruvate carboxylase (PEPC) and the subsequent decarboxylation of C(4) acids. The enzymes of the CO(2) concentrating mechanism could be affected under water deficit and limit C(4) photosynthesis. Three different C(4) grasses were submitted to gradually induced drought stress conditions: Paspalum dilatatum (NADP-malic enzyme, NADP-ME), Cynodon dactylon (NAD-malic enzyme, NAD-ME) and Zoysia japonica (PEP carboxykinase, PEPCK). Moderate leaf dehydration affected the activity and regulation of PEPC in a similar manner in the three grasses but had species-specific effects on the C(4) acid decarboxylases, NADP-ME, NAD-ME and PEPCK, although changes in the C(4) enzyme activities were small. In all three species, the PEPC phosphorylation state, judged by the inhibitory effect of L: -malate on PEPC activity, increased with water deficit and could promote increased assimilation of CO(2) by the enzyme under stress conditions. Appreciable activity of PEPCK was observed in all three species suggesting that this enzyme may act as a supplementary decarboxylase to NADP-ME and NAD-ME in addition to its role in other metabolic pathways.  相似文献   

4.
Spraying a 1-2 mmol/L solution of NaHSO3 on the leaves of wild-type rice (Oryza sativa L.)Kitaake (WT), phosphoenolpyruvate carboxylase (PEPC) transgenic (PC) rice and PEPC phosphate dikinase (PPDK) transgenic rice (PC PK), in which the germplasm was transformed with wild-type Kitaake as the gene receptor, resulted in an enhancement of the net photosynthetic rate by 23.0%, 28.8%, and 34.4%,respectively, for more than 3 d. It was also observed that NaHSO3 application caused an increase in the ATP content in leaves. Spraying PMS (a cofactor catalysing the photophosphorylation cycle) and NaHSO3 separately or together on leaves resulted in an increase in photosynthesis with all treatments. There was no additional effect on photosynthetic rate when the mixture was applied, suggesting that the mechanism by which NaHSO3 promotes photosynthesis is similar to the mechanism by which PMS acts and that both of compounds enhanced the supply of ATP. After spraying a solution of NaHSO3 on leaves, compared with the WT Kitaake rice, a greater enhancement of net photosynthetic rate was observed in PEPC transgenic (PC) and PEPC PPDK transgenic (PC PK) rice, with the greatest increase being observed in the latter group. Therefore ATP supply may become the limiting factor that concentrates CO2 in rice leaves transformed with an exogenous PEPC gene and exogenous PEPC PPDK genes.  相似文献   

5.
Phosphoenolpyruvate carboxylase (PEPC) is thought to play many roles in C(3) plants including the provision of biosynthetic precursors and control of pH during N assimilation. Its activity is controlled via phosphorylation catalysed by PEPC kinases, which are encoded by PPCK genes. We examined PPCK expression in response to changes in the supply of N or C, and to changes in intracellular pH, using cultured Arabidopsis cells and seedlings. The results show that expression of both PPCK1 and PPCK2 is increased by C availability, but does not respond to N availability. Expression of the two PPCK genes and the phosphorylation state of PEPC are increased in response to increasing intracellular pH. Elevated pH also reduces the repression of PPCK gene expression by P(i). Expression of phosphoenolpyruvate carboxykinase (PEPCK), which catalyses the decarboxylation of oxaloacetate, is decreased in response to increasing intracellular pH. pH homeostasis may be mediated at least partly by reciprocal changes in the expression of PPCK genes and PEPCK.  相似文献   

6.
The in vitro activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) were measured in cell-free extracts of Platycerium coronarium callus cultured for up to 42 days under photoautotrophic conditions with CO2 enrichment. With an increase in CO2 in the culture environment to 10% (v/v) at low light, the apparent photoautotrophic fixation of CO2 by Rubisco declined, whereas the non-photoautotrophic CO2 fixation by PEPC activity was enhanced. Hence, photosynthesis appears to play a lesser role in providing carbon skeletons and energy with prolonged culture in a CO2-enriched environment. Instead, the anaplerotic supply of C-skeletons by PEPC may be important under such a situation. Short-term H14CO3-fixation experiments indicated that photoautotrophic callus cultured for 3 weeks with 10% CO2 enrichment assimilated less 14CO2 than the control (0.03% CO2). Analyses of 14C-metabolites indicated that about 50% of the total soluble 14CO2 fixed was in the organic acid fraction and 35% in the amino acid fraction. Despite the changes in the in vitro Rubisco/PEPC activity-ratio, no significant change in the 14C distribution pattern was apparent in response to increasing sucrose or CO2 concentrations. The suppression of Rubisco activity and total chlorophyll content in high sucrose or elevated CO2 concentrations suggests an inhibition of the capacity for photoautotrophic callus growth under these conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
A Zea mays callus culture containing chlorophyll was established and grown photomixotrophically. Cell chloroplast structure, and pigment and soluble protein contents were examined. Expression of some key enzymes of C4 carbon metabolism was compared with that of etiolated (heterotrophic) and green photoautotrophic leaves. Chlorophyll content of the callus was 15–20% that of green leaves. Soluble protein content of callus was half that of leaf cells. Electron microscopic observations showed that green callus cells contained only typical granal chloroplasts. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.38) activities in green callus were ca 30% those of green leaves but 2–3 times higher than in etiolated leaves. Quantitative enzyme protein determination, using antibodies specific to maize leaf Rubisco showed that the chloroplastic carboxylase represented about 7% of total soluble protein in green callus, in parallel to its low chlorophyll content. The specific activity of Rubisco in callus and leaves was unchanged. Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity in green callus was about 20% that of green leaves and similar to that measured in etiolated leaves. Apparent Km (PEP) values (0.08 mM) for PEPC isolated from green callus and etiolated leaves were very different from values (0.5 mM) obtained with PEPC from green leaves. These kinetic characteristics together with the absence of inhibition by malate and activation by glucose-6-phosphate suggest that the properties of PEPC isolated from green callus and etiolated maize leaves are very similar to those of PEPPC from C3 plants. Using PEPC antibodies specific to green maize leaf enzyme, immunotitration of PEPC preparations containing identical enzyme units allowed complete precipitation of the green leaf enzyme with increasing antibody volumes. In contrast, 60–70% of the activity of PEPC from etiolated and green callus was inhibited, suggesting low affinity for the maize green leaf PEPC antiserum (typical C4 form). Ouchterlony double diffusion tests revealed only partial recognition of PEPC in green callus and etiolated leaves. NAD-malate dehydrogenase (NAD-MDH, EC 1.1.1.37) activity in callus was 2 and 3 times higher, respectively, than in etiolated and green leaves. NADP-malic enzyme (NADP-ME, EC 1.1.1.40) activity in callus cultures was much lower than in green leaves. All our data support the hypothesis that cultures of fully dedifferentiated chlorophyllous tissues of Zea mays possess a C3-like metabolism.  相似文献   

8.
Radioisotope techniques were used to compare photosynthetic CO2 fixation, activities of carboxylating enzymes, and the composition of photosynthates in 42 species of aquatic plants (emergent, floating, and submersed hydrophytes) collected from rivers Sysert' and Iset' in Sverdlovsk oblast (Russia). The submersed leaves, in comparison with the emergent and floating leaves, featured lower rates of potential photosynthesis (by 2.2 mg CO2/(dm2 h) on average), low content of the fraction I protein, and low activity of Rubisco and phosphoenolpyruvate carboxylase (PEPC). The averaged activities of Rubisco and PEPC were diminished in submersed leaves by 10 and 1 mg/(dm2 h), respectively. Different hydrophyte groups showed similar composition of assimilates accumulated after 5-min photosynthesis and did not differ in this respect from terrestrial plants. However, the incorporation of 14C into sucrose and starch in submersed leaves (30 and 9% of total labeling, respectively) was lower than in emergent and floating leaves (45 and 15%, respectively). At the same time, the incorporation of 14C into C4 acids (malate and aspartate) was 1.5 times higher in submersed leaves than in other leaf types. Analysis of leaf differentiation, the Rubisco/PEPC activity ratio, the PEPC activity, and the composition of primary photosynthates in the pulse–chase experiments revealed no evidence of the C4 effect in the submersed hydrophytes examined. The adaptation of hydatophytes to specific conditions of an aquatic environment was structurally manifested in the reduction (by a factor of 3–5) in the number of chloroplasts per 1 cm2 leaf area. This small number of chloroplasts was responsible for low photosynthetic rates in submersed leaves, although metabolic activities of individual chloroplasts were similar for all three hydrophyte groups.  相似文献   

9.
Spraying a 1-2 mmol/L solution of NaHSO3 on the leaves of wild-type rice (Oryza sativa L.)Kitaake (WT), phosphoenolpyruvate carboxylase (PEPC) transgenic (PC) rice and PEPC phosphate dikinase(PPDK) transgenic rice (PC PK), in which the germplasm was transformed with wild-type Kitaake as the gene receptor, resulted in an enhancement of the net photosynthetic rate by 23.0%, 28.8%, and 34.4%,respectively, for more than 3 d. It was also observed that NaHSO3 application caused an increase in the ATP content in leaves. Spraying PMS (a cofactor catalysing the photophosphorylation cycle) and NaHSO3 separately or together on leaves resulted in an increase in photosynthesis with all treatments. There was no additional effect on photosynthetic rate when the mixture was applied, suggesting that the mechanism by which NaHSO3 promotes photosynthesis is similar to the mechanism by which PMS acts and that both of compounds enhanced the supply of ATE After spraying a solution of NaHSO3 on leaves, compared with the WT Kitaake rice, a greater enhancement of net photosynthetic rate was observed in PEPC transgenic(PC) and PEPC PPDK transgenic (PC PK) rice, with the greatest increase being observed in the latter group. Therefore ATP supply may become the limiting factor that concentrates CO2 in rice leaves transformed with an exogenous PEPC gene and exogenous PEPC PPDK genes.  相似文献   

10.
11.
The biochemical basis for photosynthetic plasticity in tropical trees of the genus Clusia was investigated in three species that were from contrasting habitats and showed marked differences in their capacity for crassulacean acid metabolism (CAM). Physiological, anatomical and biochemical measurements were used to relate changes in the activities/amounts of key enzymes of C3 and C4 carboxylation to physiological performance under severe drought stress. On the basis of gas-exchange measurements and day/night patterns of organic acid turnover, the species were categorised as weak CAM-inducible (C.aripoensis Britt.), C3-CAM intermediate (C. minor L.) and constitutive CAM (C.␣rosea Jacq. 9.). The categories reflect genotypic differences in physiological response to drought stress in terms of net carbon gain; in C. aripoensis net carbon gain was reduced by over 80% in drought-stressed plants whilst carbon gain was relatively unaffected after 10 d without water in C. rosea. In turn, genotypic differences in the capacity for CAM appeared to be directly related to the capacities/amounts of phosphoenolpyruvate carboxylase (PEPCase) and phosphoenolpyruvate carboxykinase (PEPCK) which increased in response to drought in both young and mature leaves. Whilst measured activities of PEPCase and PEPCK in well-watered plants of the C3-CAM intermediate C. minor were 5–10 times in excess of that required to support the magnitude of organic acid turnover induced by drought, close correlations were observed between malate accumulation/PEPCase capacity and citrate decarboxylation/PEPCK capacity in all the species. Drought stress did not affect the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein in any of the species but Rubisco activity was reduced by 35% in the weak CAM-inducible C. aripoensis. Similar amounts of glycine decarboxylase (GDC) protein were present in all three species regardless of the magnitude of CAM expression. Thus, the constitutive CAM species C. rosea did not appear to show reduced activity of this key enzyme of the photorespiratory pathway, which, in turn, may be related to the low internal conductance to CO2 in this succulent species. Immuno-histochemical techniques showed that PEPCase, PEPCK and Rubisco were present in cells of the palisade and spongy parenchyma in leaves of species performing CAM. However, in leaves from well-watered plants of C. aripoensis which only performed C3 photosynthesis, PEPCK was localized around latex-producing ducts. Differences in leaf anatomy between the species suggest that the association between mesophyll succulence and the capacity for CAM in these hemi-epiphytic stranglers has been selected for in arid environments. Received: 4 July 1997 / Accepted: 27 November 1997  相似文献   

12.
Oxygen consumption by L3 and adult Ostertagia (Teladorsagia) circumcincta was examined in vitro to determine whether oxygen can be utilised in metabolism. The oxygen concentration in the abomasal fluid of sheep infected with O. circumcincta was also measured. Rates of consumption (in nmol O2/h/1000 worms) were 13+/-1 in sheathed L3, 34+/-6 in ex-sheathed L3, and 1944+/-495 in adult worms. Constant rates of consumption were maintained until media oxygen concentration dropped to between 10 and 20 microM. Consumption was inhibited 95% by cyanide in L3 and 74% in adults. Oxygen concentration in abomasal fluid varied between 10 and 30 microM in both infected and uninfected animals. During infection, oxygen concentration decreased slightly with increased abomasal pH, though the correlation between the two was poor (r=-0.30). In conclusion, O. circumcincta can consume oxygen and oxygen concentration at the infection site is sufficient to support at least some aerobic metabolism.  相似文献   

13.
Photosynthetic14CO2 assimilation, ribulose 1, 5-bisphosphate carboxylase (RuBPC), phosphoenol pyruvate carboxylase (PEPC) and dry matter (DM) production were examined in wheat under varying levels and forms of nitrogen.14CO2 assimilation increased gradually after germination reaching a peak value at anthesis, followed by a sharp decline. A similar pattern was observed for both the carboxylases, RuBPC and PEPC activities. Increase in nitrogen levels, in general, brought about a significant increase over the control (zero-nitrogen) in14CO2 assimilation, RuBPC, PEPC activities and DM production. There were no significant differences in RuBPC activity and14CO2 assimilation with respect to the forms of nitrogen. Significantly higher PEPC activity and DM was observed in plants supplied with nitrate-nitrogen (NO3-N), as compared to those supplied with ammonium-nitrogen (NH4-N). The significance of PEPC activity in C3 photosynthesis is discussed in relation to DM distribution.  相似文献   

14.
The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with “free” enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor.  相似文献   

15.
16.
The chlorophyllous layer of leaf of a PEP-CK type CAM plant Aloe vera was stripped tiff from the colorIess water storage tissue and used to stuly the interrelation between the activity of decarboxylating enzyme phosphoenolpyruvate carboxykinase (PEPCK) and photosynthesis. Oxaloacetate, malate+ADP, and NaHCO3 were found to stimulate photosynthetic oxygen evolution. During the period from 6:00 to 18:00 of the day time, a diurnal fluctuation was observed in both PEPCK activity and the rate of oxygen evolution. The maximum of photosynthesis appeared at 10-12:00, but the maximum PEPCK activity appeared at 14:00. The PEPCK activity and photosynthetic rate in leaf discs increased with temperature from 10 to 35℃, then decreased at 45℃. Similar decline of both parameters was found in the leaf discs stressed by different concentration of PEG-6000 solution for 4.5 h. At light intensity of 900 mol m-2 s-1 and 25℃, the PEPCK activity and photosynthetic rate of leaf discs rised with the illumination time, then a slight inhibition followed at the time of 30 min (Pn) or 40 min (PEPCK). The strong response of PEPCK activity to high light intensity in leaf discs, and a progressive increase of PEPCK activity in direct illumination of crude enzyme extractm the range of 0-55 min, indicated that light s likely to be an activator for PEPCK. Leaf discs were infiltrated with 3-(3,4-dichlorophenyl)-l, 1-dimethylurea, DL-glyceraldehyde and 2,4-dimitrophenol resulted in the partial inhibition of light-ependent photosynthesis and decarboxylation of C4 acid. The activity of PEPCK was also stimulated by Mg2+ or Mg2++ATP infiltrated into the leaf discs in the dark. The evidence presented here suggested that PEPCK activity of CAM plants showed a close interrelation with photosynthesis. Both of them were regulated by the environmental changes. The activity of PEPCK might be coupled to electron trsnsport and photophosphorylatiou.  相似文献   

17.
PEP-dependent4 CO2-fixation by extracts of Ascophyllum nodosum (L.) Le Jol. is reported. The carboxylation of PEP is Mn2+ dependent and ATP is shown to be a product. IDP was found to be less efficient as a phosphate acceptor than ADP and 3-mercaptopicolinic acid inhibited the carboxylation reaction. Extracts decarboxylated OAA only in the presence of ATP and had high activities of MDH and GOT. This evidence, together with the probable absence of PEPC, PEPCTrP, and PC in A. nodosum extracts, favors the view that PEPCK is responsible for the light-independent CO2-fixation observed in this alga.  相似文献   

18.
Phosphoenolpyruvate carboxykinase (PEPCK) was purified 600-fold to homogeneity from the cotyledons of cucumber (Cucumis sativus L.) and a polyclonal antiserum raised. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) the purified preparation contained a single polypeptide of 62 kDa, consistent with previous studies of this enzyme in C4 grasses. Immunoblots of crude extracts showed that a form of PEPCK of approximately this molecular mass predominated in cucumber cotyledons and in a range of plant tissues (cotyledons of fat-storing seedlings, leaves of C4 and Crassulacean acid metabolism plants). However, when these tissues were extracted in the presence of SDS and the extracts analysed by immunoblotting, a larger polypeptide of 68–77 kDa was detected. Thus the enzyme generally measured in crude extracts is a smaller form which arises by rapid proteolysis. This phenomenon means that the native form of PEPCK has never been purified from plants nor its properties determined.Abbreviations CAM Crassulacean acid metabolism - DTT dithiothreitol - PEG polyethyleneglycol - PEP phosphoenolpyruvate - PEPCK phosphoenolpyruvate carboxykinase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase We are grateful to Dr. Steve Smith (University of Edinburgh, UK) for helpful discussions, Dr. Alf Keys (Institute of Arable Crops Research, Rothamsted, UK) for the gift of pure Rubisco and Dr. Tristan Dyer (John Innes Centre for Plant Science Research, Norwich, UK) for the antiserum to fructose-1,6-bisphosphatase. This research was supported by the joint Agricultural and Food Research Council/Science and Engineering Research Council Programme on the Biochemistry of Metabolic Regulation in Plants (PG50/590).  相似文献   

19.
Behm C. A. and Bryant C. 1982. Phosphoenolpyruvate carboxykinase from Fasciola hepatica. International Journal for Parasitology12: 271–278. The kinetic properties of a partially purified preparation of phosphoenolpyruvate carboxykinase (PEPCK) from F. hepatica were examined. The pH optimum for the carboxylation reaction is 5.8–6.2. The enzyme is more active with Mn2+ than Mg2+ and the Mn2+ saturation curve was sigmoid. Apparent Km values for the substrates GDP, IDP, PEP and HCO3? were determined and found to be in the same range as those reported for other helminths except that the enzyme is less sensitive to low PEP concentrations. GTP and ATP at 0.5 and 1.0 mM inhibit the enzyme; the GTP inhibition was greater in the presence of Mg2+ than Mn2+ and was competitive with GDP. It was concluded that the activity of PEPCK from F. hepatica is controlled by the concentration of reactants and the ambient pH, that the accumulation of GTP is a sensitive mechanism for inhibiting the carboxylation reaction and that PEPCK activity in the cytosol is likely to be favoured over that of pyruvate kinase except when pH is high and PEP concentration low.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号