首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
Measurement of organophosphorus (OP) pesticide metabolites in human biological fluids is an important biomarker of pesticides exposure. We measured the urinary excretion of OP pesticide metabolites to evaluate occupational and non-occupational exposure to OP pesticides in the Chinese population in Shanghai (Eastern China). We collected urine samples from 30 exposed workers in a dimethoate emulsion packing division and from 60 healthy adults without any report of occupational exposure. DMP, DMTP, DMDTP, DEP, DEDP and DEDTP were measured by GC-FPD after derivatization with pentafluorobenzyl bromide. The LOQ values (1 mL urine) were 2.0 μg/L for DMP and DETP, 4.0 μg/L for DEP and DEDTP, 8.0 μg/L for DMDTP, and 10.0 μg/L for DMTP. Dimethyl phosphates were detected in the majority of the urine samples, i.e., 90–100% in the exposed group and 80–87% in the control group. The concentration of the urinary diethyl phosphates DEP and DETP was above the LOQ values in 40 and 20% of samples for the exposed group, and in 50 and 30% of the samples for the control group, respectively. DEDTP was not detectable in the urine samples except for a post-shift exposed worker (detection frequency, 6.7%). Median creatinine-adjusted values (μg/g cr.) for DAP in Chinese with pre-shift, post-shift and without occupational exposure to OP were 316, 584 and 170 for DMP, below LOQ, 115 and 114 for DEP, 840, 1730 and 693 for DMTP, and 255, 756 and 135 for DMDTP, respectively. In all subjects, the highest excretion levels were found for DMTP. Several OP pesticide metabolites were frequently detected in urine samples of both populations studied.  相似文献   

2.
A metabolomics-based systems toxicology approach was used to profile the urinary metabolites for the toxicity related processes and pathogenesis induced by doxorubicin (DOX) to rats. Endogenous metabolite profiles were obtained with ultra performance liquid chromatography-mass spectrometry (UPLC-MS) for rats receiving different single dosages of DOX (5, 10 or 20 mg/kg) prior and at three time points after dosage. Principal components analysis (PCA) allowed detection of two major systemic metabolic changes with the time due to the induced toxicity. Furthermore, Analysis of variance (ANOVA) Simultaneous Component Analysis (ASCA) was applied to reveal the variation caused by time and dose, and their interaction in a multivariate way. Finally, various metabolites involved in the toxic processes could be identified using their accurate mass and MSn experiments, and possible mechanisms of the toxicity of DOX were postulated. In conclusion, metabolomics as a systems toxicology approach was able to provide comprehensive information on the dynamic process of drug induced toxicity. In addition, detection of the systemic toxic effects could be obtained with metabolomics at an earlier stage compared to the clinical chemistry and histopathological assessment.  相似文献   

3.
Depression is a common and highly debilitating psychiatric illness. However, the pathophysiology of depression is not fully understood. In this study Sprague-Dawley rats were exposed to chronic unpredictable mild stress (CUMS) to induce depression. A metabonomic study on plasma of CUMS-induced depressive rats was performed to research the pathologic mechanism of depression by using 1H nuclear magnetic resonance (NMR) spectroscopy and ultra performance liquid chromatography coupled to mass spectrometry (UPLC–MS). Clear separations between depressive rats and control rats were observed by principal component analysis (PCA) based on the data obtained using both analytical techniques and 18 significantly changed metabolites were identified as potential biomarkers of depression. Depressive rats were characterized by altered levels of plasma lysophosphatidylcholines, amino acids, cholic acid, choline, lactate, glycoproteins, glucose, ketone bodies, nucleosides and gut microflora metabolites, which were related to multiple perturbed metabolic pathways and contributed to the elucidation of the complex mechanism of depression. To the best of our knowledge, this is the first plasma metabonomic study on CUMS-induced depressive rats by using two complementary analytical technologies. Our results showed that metabonomic approach offers a useful tool to identify depression-specific biomarkers and provide new insights into the pathophysiology of depression.  相似文献   

4.
Tan G  Lou Z  Liao W  Dong X  Zhu Z  Li W  Chai Y 《Molecular bioSystems》2012,8(2):548-556
An ultra performance liquid chromatography coupled to mass spectrometry-based metabonomic approach, which utilizes both reversed-performance (RP) chromatography and hydrophilic interaction chromatography (HILIC) separations, has been developed to characterize the global serum metabolic profile associated with myocardial infarction (MI). The HILIC was found necessary for a comprehensive serum metabonomic profiling, providing complementary information to RP chromatography. By combining with partial least squares discriminant analysis, 21 potential biomarkers in rat serum were identified. To further elucidate the pathophysiology of MI, related metabolic pathways have been studied. It was found that MI was closely related to disturbed sphingolipid metabolism, phospholipid catabolism, fatty acid transportation and metabolism, tryptophan metabolism, branched-chain amino acids metabolism, phenylalanine metabolism, and arginine and proline metabolism. With the presented metabonomic method, we systematically analyzed the therapeutic effects of Traditional Chinese Medicine Sini decoction (SND). The results demonstrated that SND administration could provide satisfactory effects on MI through partially regulating the perturbed metabolic pathways.  相似文献   

5.
Organophosphorous pesticides, commonly used in agriculture for achieving better quality products, are toxic substances that have harmful effects on human health. Recent research on pesticides, especially pesticide mixtures, has shown that they are one of the key environmental health issues. The aim of the present study was to investigate whether dichlorvos, acephate, dimethoate and phorate, either used separately or in combination, can induce oxidative damage in rat livers. The levels of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation products (malondialdehyde) were used as criteria. Low, middle and high doses of pesticides in drinking water were continuously administered orally to rats ad libitum for 24 weeks. Results show that the antioxidative defense mechanisms and lipid peroxidation in the rat livers display different responses, depending on the pesticide treatments and doses. The parameters for acephate, dichlorvos, phorate and dimethoate in the low-dose group, and the corresponding low-dose co-treated group were not altered. The oxidative damage in rat livers showed different responses with increasing pesticide dose according to the different pesticide treatments. The combination group of dichlorvos, acephate, dimethoate and phorate displayed different responses compared with the single pesticide-treated group. However, these responses did not constitute the sum of the response produced by each pesticide in the liver.  相似文献   

6.
The end products of polyunsaturated fatty acid (PUFA) peroxidation, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE), and isoprostanes (8-iso-PGF), are widely used as systemic lipid oxidation/oxidative stress biomarkers. However, some of these compounds have also a dietary origin. Thus, replacing dietary saturated fat by PUFAs would improve health but could also increase the formation of such compounds, especially in the case of a pro-oxidant/antioxidant imbalanced diet. Hence, the possible impact of dietary fatty acids and pro-oxidant compounds was studied in rats given diets allowing comparison of the effects of heme iron vs. ferric citrate and of ω-6- vs. ω-3-rich oil on the level of lipid peroxidation/oxidative stress biomarkers. Rats given a heme iron-rich diet without PUFA were used as controls. The results obtained have shown that MDA and the major urinary metabolite of HNE (the mercapturic acid of dihydroxynonane, DHN-MA) were highly dependent on the dietary factors tested, while 8-iso-PGF was modestly but significantly affected. Intestinal inflammation and tissue fatty acid composition were checked in parallel and could only explain the differences we observed to a limited extent. Thus, the differences in biomarkers were attributed to the formation of lipid oxidation compounds in food or during digestion, their intestinal absorption, and their excretion into urine. Moreover, fecal extracts from the rats fed the heme iron or fish oil diets were highly toxic for immortalized mouse colon cells. Such toxicity can eventually lead to promotion of colorectal carcinogenesis, supporting the epidemiological findings between red meat intake and colorectal cancer risk.Therefore, the analysis of these biomarkers of lipid peroxidation/oxidative stress in urine should be used with caution when dietary factors are not well controlled, while control of their possible dietary intake is needed also because of their pro-inflammatory, toxic, and even cocarcinogenic effects.  相似文献   

7.
The time-related metabolic responses to l-arginine (ARG)-induced exocrine pancreatic toxicity were investigated using single ip doses of 1,000 and 4,000 mg/kg body weight over a 7 day experimental period in male Sprague-Dawley rats. Sequential timed urine and plasma samples were analyzed using high resolution (1)H NMR spectroscopy together with complementary clinical chemistry and histopathology analyses. Principal components analysis (PCA) and orthogonal projection on latent structures discriminant analysis (O-PLS-DA) were utilized to analyze the (1)H NMR data and to extract and identify candidate biomarkers and to construct metabolic trajectories post ARG administration. Low doses of ARG resulted in virtually no histopathological damage and distinct reversible metabolic response trajectories. High doses of ARG caused pancreatic acinar degeneration and necrosis and characteristic metabolic trajectory profiles with several distinct phases. The initial trajectory phase (0-8 h) involved changes in the urea cycle and transamination indicating a homeostatic response to detoxify excess ammonia generated from ARG catabolism. By 48 h, there was a notable enhancement of the excretion of the gut microbial metabolites, phenylacetylglycine (PAG), 4-cresol-glucuronide and 4-cresol-sulfate, suggesting that compromised pancreatic function impacts on the activity of the gut microbiota giving potential rise to a novel class of surrogate extragenomic biomarkers of pancreatic injury. The implied compromise of microbiotal function may also contribute to secondary hepatic and pancreatic toxic responses. We show here for the first time the value of metabonomic studies in investigating metabolic disruption due to experimental pancreatitis. The variety of observed systemic responses suggests that this approach may be of general value in the assessment of other animal models or human pancreatitis.  相似文献   

8.
This work describes an exploratory NMR metabonomic study of second trimester maternal urine and plasma, in an attempt to characterize the metabolic changes underlying prenatal disorders and identify possible early biomarkers. Fetal malformations have the strongest metabolic impact in both biofluids, suggesting effects due to hypoxia (leading to hypoxanthine increased excretion) and a need for enhanced gluconeogenesis, with higher ketone bodies (acetone and 3-hydroxybutyric acid) production and TCA cycle demand (suggested by glucogenic amino acids and cis-aconitate overproduction). Choline and nucleotide metabolisms also seem affected and a distinct plasma lipids profile is observed for mothers with fetuses affected by central nervous system malformations. Urine from women who subsequently develop gestational diabetes mellitus exhibits higher 3-hydroxyisovalerate and 2-hydroxyisobutyrate levels, probably due to altered biotin status and amino acid and/or gut metabolisms (the latter possibly related to higher BMI values). Other urinary changes suggest choline and nucleotide metabolic alterations, whereas lower plasma betaine and TMAO levels are found. Chromosomal disorders and pre-preterm delivery groups show urinary changes in choline and, in the latter case, in 2-hydroxyisobutyrate. These results show that NMR metabonomics of maternal biofluids enables the noninvasive detection of metabolic changes associated to prenatal disorders, thus unveiling potential disorder biomarkers.  相似文献   

9.
An evaluation of toxic effects of three organophosphorus pesticides viz. monocrotophos, methyl parathion and dimethoate given orally daily for 90 days was done in terms of enzymatic changes in plasma and liver of female albino rats. A significant decrease was observed in the level of esterases in plasma with all the three pesticides. The activity of acid and alkaline phosphatases and aminotransferases increased significantly in plasma and significantly or marginally in liver with these pesticides. The results are thus indicative of the cellular toxicity of these organophosphates even after their subchronic administration in low doses for a long period.  相似文献   

10.

Background

Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction.

Methodology/Principal Findings

Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group.

Conclusions/Significance

BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity.  相似文献   

11.
Aristolochic acid nephropathy (AAN) is associated with the prolonged exposure to nephrotoxic and carcinogenic aristolochic acids (AAs). DNA adducts induced by AAs have been proven to be critical biomarkers for AAN. Therefore, accurate and specific quantification of AA-DNA adducts is important. In this study, a specific method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and applied for the determination of 7-(deoxyadenosin-N(6)-yl)aristolactam I (dA-AAI) in exfoliated urothelial cells of AA-dosed rats. After the isolation from urine samples, DNA in urothelial cells were subjected to enzymatic digestion and solid-phase extraction on a C(18) Sep-Pak cartridge for the enrichment of DNA adducts. The sample extracts were analyzed by reverse-phase UPLC-MS/MS with electrospray ionization in positive ion mode. The quantification of the AA-DNA adduct was performed by using multiple reaction monitoring with reserpine as internal standard. The method provided good accuracy and precision with a detection limit of 1 ng/ml, which allowed the detection of trace of dA-AAI in exfoliated urothelial cells. After one-month oral dose of AAI at 10 mg/kg/day, 2.1±0.3 dA-AAI per 10(9) normal dA was detected in exfoliated urothelial cells of rats. Compared to the traditional methods such as (32)P-postlabelling and HPLC with fluorescence detection, the developed UPLC-MS/MS method is more specific and rapid with a retention time of 4 min. The outcome of this study may have clinical significance for diagnosing and monitoring AA-associated disease because detection of DNA adducts in exfoliated urothelial cells is non-invasive and convenient.  相似文献   

12.
Zhang H  Ding L  Fang X  Shi Z  Zhang Y  Chen H  Yan X  Dai J 《PloS one》2011,6(6):e20862

Background

Perfluorododecanoic acid (PFDoA) is a perfluorinated carboxylic chemical (PFC) that has broad applications and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive toxicity of PFCAs, few have investigated renal toxicity.

Methodology/Principal Findings

Here, we used comparative proteomic and metabonomic technologies to provide a global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110 days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA treated rats (0.2 and 0.5 mg-dosed groups) were successfully identified. These proteins were mainly involved in amino acid metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine, histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while homocitrulline, α-aminoadipic acid, β-alanine, and cystathionine decreased.

Conclusion/Significance

These observations provide evidence that disorders in glucose and amino acid metabolism may contribute to PFDoA nephrotoxicity. Additionally, α2u globulin may play an important role in protecting the kidneys from PFDoA toxicity.  相似文献   

13.
BACKGROUND: Dimethoate (O,O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate), an organophosphate insecticide, was examined for its potential to produce developmental toxicity in rats after oral administration. METHODS: Pregnant Fischer 344 rats were given sublethal doses of 0 (corn oil), 7, 15, and 28 mg/kg/day dimethoate by gavage on gestation days (GD) 6-15. Maternal effects in 15 and 28 mg/kg/day dose groups included cholinergic signs such as tremors, diarrhea, weakness, and salivation, and depression in the maternal and fetal brain acetylcholinesterase (AChE) activities. Other maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. No maternal toxicity was apparent in the 7 mg/kg/day dose group. RESULTS: Maternal exposure to dimethoate during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 28 mg/kg/day dose group. No external, visceral, and skeletal abnormalities were observed in any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results dimethoate can produce clinical signs of toxicity and significant inhibition of the maternal and fetal AChE activities in dose groups of 15 and 28 mg/kg/day and showed fetotoxicity without teratogenic effects at 28 mg/kg/day.  相似文献   

14.
The toxicity of dimethoate, deltamethrin and pirimicarb residues to Bembidion lampros and Coccinella septempunctata was evaluated by confining groups of insects to winter wheat foliage and soil for 24 h at different times after treatment in the field. Flag leaf residues were found to be more toxic than first leaf residues: soil residues were the least toxic with pirimicarb showing virtually no soil toxicity. In general, dimethoate and deltamethrin showed similar levels of foliar toxicity with flag leaf toxicity on the first day after treatment being in the range 60–80% for B. lampros; deltamethrin was however, less toxic than dimethoate at ground level. Both of these products were more toxic than pirimicarb. The long-term exposure of insects, surviving the 24 h bioassays, to treated soil at different times following application resulted in further mortality and provided estimates of the maximum levels of mortality that populations of predators might suffer migrating into the crop at different times following application. Dimethoate was shown to be particularly harmful at the current recommended field application rate and reduced doses were proposed to limit the severity of the initial effects.  相似文献   

15.
The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward Gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1Δ9) were nontoxic, whereas palmitoleate (16:1Δ9) was a potent growth inhibitor. Cells treated with 16:1Δ9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthesis, and the release of solutes and low-molecular-weight proteins into the medium. Other cytotoxic lipids, such as glycerol ethers, sphingosine, and acyl-amines blocked growth by the same mechanisms. Nontoxic 18:1Δ9 was used for phospholipid synthesis, whereas toxic 16:1Δ9 was not and required elongation to 18:1Δ11 prior to incorporation. However, blocking fatty acid metabolism using inhibitors to prevent acyl-acyl carrier protein formation or glycerol-phosphate acyltransferase activity did not increase the toxicity of 18:1Δ9, indicating that inefficient metabolism did not play a determinant role in fatty acid toxicity. Nontoxic 18:1Δ9 was as toxic as 16:1Δ9 in a strain lacking wall teichoic acids and led to growth arrest and enhanced release of intracellular contents. Thus, wall teichoic acids contribute to the structure-specific antimicrobial effects of unsaturated fatty acids. The ability of poorly metabolized 16:1 isomers to penetrate the cell wall defenses is a weakness that has been exploited by the innate immune system to combat S. aureus.  相似文献   

16.
CCl(4)-induced metabonomic changes have been extensively studied for mammalian liver, and such changes have not been reported for other organs. To investigate the CCl(4) effects on other organs, we analyzed the CCl(4)-induced metabonomic changes in rat kidney, lung, and spleen using (1)H NMR-based metabonomics approaches with complementary information on serum clinical chemistry and histopathology. We found that acute CCl(4) exposure caused significant level elevation for creatine and decline for glucose, taurine, trimethylamine, uridine, and adenosine in rat kidney. CCl(4)-treatment also induced elevation of amino acids (isoleucine, leucine, valine, threonine, alanine, lysine, ornithine, methionine, tyrosine, phenylalanine, and histidine), creatine, and betaine in rat lung together with depletion of glycogen, glucose, taurine, glycine, and hypoxanthine. Furthermore, CCl(4) caused elevation of lactate, alanine, betaine, and uracil in rat spleen accompanied with decline for glucose, choline, and hypoxanthine. These observations indicated that CCl(4) caused oxidative stresses to multiple rat organs and alterations of their functions including renal osmotic regulations, accelerated glycolysis, and protein and nucleotide catabolism. These findings provide essential information on CCl(4) toxicity to multiple rat organs and suggest that systems toxicological views are required for metabonomic studies of toxins by taking many other organs into consideration apart from so-called targeted ones.  相似文献   

17.
Wu H  Zhang X  Liao P  Li Z  Li W  Li X  Wu Y  Pei F 《Journal of inorganic biochemistry》2005,99(11):2151-2160
An integrated metabonomic approach based on high-resolution (1)H NMR spectroscopy has been applied to the investigation of the acute biochemical effects caused by Ce(NO(3))(3) in rats. Male Wistar rats were separated into 8 groups and each was treated with one of following compounds, mercury II chloride (HgCl(2)), 2-bromoethanamine hydrobromide (BEA), carbon tetrachloride (CCl(4)), alpha-naphthylisothiocyanate (ANIT), and three doses of Ce(NO(3))(3) (i.p. 2, 10 and 50mg/kg body weight). Urine was collected over a 48-h time course, and serum and tissue samples (liver and kidney) were gained after exposure to Ce(NO(3))(3) for 48 h. Histopathology and plasma clinical chemistry were also performed for all the tissue and plasma samples. Urine and serum samples were analyzed by 600 MHz (1)H NMR spectroscopy. All the (1)H NMR spectra were data-processed and analyzed using principal components analysis or hierarchical clustering analysis to show the time- and dose-dependent biochemical variations induced by Ce(NO(3))(3). Metabolic profiles of urinary (1)H NMR spectra from animals treated with Ce(NO(3))(3) exhibited an increase in trimethylamine N-oxide (TMAO), dimethylamine (DMA), dimethylglycine (DMG), taurine (Tau) and amino acids (valine, leucine and isoleucine), together with a decrease in citrate. The (1)H NMR spectral analysis of serum presented the elevation of acetone, acetoacetate, lactate and creatinine levels. These findings indicated the impairment of fatty acid beta-oxidation in liver mitochondria and renal lesions. This work illustrates the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by rare earths.  相似文献   

18.
The effects of sardine and soybean oils on plasma lipids have been studied in young and aged rats. Plasma cholesterol and bile acids of aged rats fed on a sardine oil diet decreased to a greater degree than those of young rats. Cholesterol, bile acids and phospholipids of the soybean oil diet group decreased only in aged rats. Increases in plasma eicosapentaenoic (sardine) and linoleic (soybean) acid levels of aged rats were observed to be greater than those of young rats. These results indicate that the age enhances the effects of fish and soybean oils on plasma lipids by suppressing their characteristic fatty acid metabolism.  相似文献   

19.
An ultra performance liquid chromatography coupled to mass spectrometry-based metabonomic approach, combined with pattern recognition methods including PCA, PLS-DA, RF and heatmap, has been developed to characterize the global serum metabolic profile associated with ionizing radiation (IR). As the VIP-value threshold cutoff of the metabolites was set to 2, metabolites above this threshold were filtered out as potential target biomarkers. Nineteen distinct potential biomarkers in rat plasma were identified. To further elucidate the pathophysiology of IR, related metabolic pathways have been studied. It was found that IR was closely related to disturbed fatty acid metabolism, taurine and hypotaurine metabolism, sphingolipid metabolism, purine metabolism, pyrimidine metabolism, phospholipid catabolism, tryptophan metabolism, phenylalanine metabolism, and bile acid metabolism. With the presented metabonomic method, we systematically analyzed the protective effects of Traditional Chinese Medicine Hong Shan Capsule (HSC). The results demonstrated that HSC administration could provide satisfactory effects on IR through partially regulating the perturbed metabolic pathways.  相似文献   

20.
BackgroundMethotrexate (MTX), a folic acid analogue, is used as a first-line treatment for rheumatoid arthritis (RA) since it has more therapeutic mechanisms than any other drug. Being an undeniable drug for the treatment of arthritis, even low-dose MTX provokes intestinal toxicity as a primary adverse effect and does not revive an anti-inflammatory element. Thus, our study aims to elucidate the anti-arthritic and prophylactic activity of supplements L-carnitine (L) and zinc (Z) against MTX-mediated intestinal damage in arthritis rats.MethodsThe rats were assessed for arthritic parameters such as body weight, paw volume, x-ray scan, and serum trace elements level. To analyze the toxic effects of MTX in the rats, intestine pH, mucosal weight, digestive enzymes, myeloperoxidase, histopathological, and immunohistochemical analysis were performed.ResultsOur study demonstrated that the arthritic parameters have shown that MTX has an ameliorative effect on arthritic rats. Besides, our findings showed that low-dose MTX (2.5 mg/kg b.w.) given once a week for two weeks during arthritis treatment had toxic effects in the rat's intestine, as evidenced by changes in intestine pH and mucosal weight, decreased digestive enzymes, increased MPO, and degenerative changes in histopathological analysis. Concurrent therapy of LZ with MTX, on the other hand, restored the modifications in these parameters.ConclusionMTX in combination with LZ effectively manages arthritis than monotherapy and significantly prevents MTX-induced intestinal damage in arthritis rats. Thus, LZ could be used as an improved therapeutic and safety for MTX-instigated intestinal damage during arthritis treatments. Therefore, our combination of L-carnitine and zinc with MTX would be promising prophylactic activity for arthritis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号