首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pythium species are devasting pathogens causing major crop losses, e.g., damping-off in sugar beet caused by Pythium ultimum and root-rot of tomato caused by Pythium aphanidermatum. The use of natural antagonistic microorganisms is a promising environment-friendly approach to control Pythium-caused plant diseases. There are several examples of biocontrol of diseases caused by Pythium species but the application of bioeffectors (biological control agents) is limited for various reasons, including the restricted amount of gene-modification based biotechnological progress. The regulations in many countries prevent genetically modified bioeffectors from being routinely deployed in field conditions. Our two connected aims in this review are (1) to compile and assess achievements in genetic modification of bioeffectors which have been tested for parasitism or antagonism towards a Pythium plant pathogen or biocontrol of a plant disease caused by a Pythium species, and (2) discuss how a better performing bioeffector could be engineered to improve biocontrol of Pythium-caused plant diseases. We focus on the role of seven key mechanisms: cellulases, carbon catabolite de-repression, glycosylation, reactive oxygen species, chitin re-modelling, proteases, and toxic secondary metabolites. Genetic modifications of bioeffectors include gene deletion and overexpression, as well as the replacement of promoter elements to tune the gene expression to the presence of the pathogen. Gene-modifications are limited to fungal and bacterial bioeffectors due to the difficulty of gene modification in oomycete bioeffectors such as Pythium oligandrum. We assess how previous gene modifications could be combined and what other gene modification techniques could be introduced to make improved bioeffectors for Pythium-caused plant diseases. The broad host-range of Pythium spp. suggests engineering improved antagonistic traits of a bioeffector could be more effective than engineering plant-mediated traits i.e., engineer a bioeffector to antagonise a plant pathogen in common with multiple plant hosts rather than prime each unique plant host.  相似文献   

2.
N. J. Fokkema 《BioControl》1996,41(3-4):333-342
Research has demonstrated the agricultural potential of biological control. For airborne pathogens as well as for soilborne pathogens similar strategies based on different targets in the life cycle of the pathogen can be distinguished, viz. (1) microbial protection of the host against infection, (2) microbial reduction of pathogen sporulation and (3) microbial interference with pathogen survival. Some successes and failures with respect to these targets will be discussed and include (1) biocontrol of seedling diseases, root pathogens, and post-harvest diseases (2) biocontrol of powdery mildew and Botrytis cinerea (3) biocontrol of sclerotial pathogens. Despite of a lot of research on biological control of plant diseases, the number of products available is limited and their market size is marginal. The market for biological control products is not only determined by agricultural aspects such as the number of diseases controlled by one biocontrol product in different crops but also by economic aspects as cost-effective mass production, easy registration and the availability of competing means of control including fungicides. The future development of low-chemical input sustainable agriculture and organic farming will determine the eventual role of biological control in agriculture.  相似文献   

3.
《Biological Control》2006,36(3):183-196
The topic of ecological, practical, and political considerations in the selection of weed targets for biological control has been widely discussed during the past two decades, mostly from the perspective of insect herbivores. For conceptual and practical purposes, plant pathogens have been treated in these discussions as if they are a subset of inoculative biocontrol agents, with little said about the inherent differences between pathogens and insects as biocontrol agents or the selection of weed targets for control by the inundative, bioherbicide strategy. Herein, I attempt to address the question of what makes a good biological control target for plant pathogens used as inoculative as well as inundative agents, basing my analysis on examples from the past three decades. Despite the small number of examples available for this analysis, the following generalizations can be made: (1) Weeds with robust capacity for vegetative regeneration are more difficult to control with pathogens than those that lack this trait. (2) A plant’s growth habit is not a reliable guide for target selection; weeds that have been successfully controlled include annual and biennial herbs, perennial shrubs, perennial vines, and trees, while numerous failures have been reported irrespective of the target’s growth habit or reproductive mode. (3) It is more challenging to control species with genetic heterogeneity and capacity for introgression than genetically homogeneous and reproductively conserved species. (4) Matching the target host’s susceptibility with the candidate pathogen’s virulence is of utmost importance for biocontrol success since host–pathogen interactions at the species and subspecies levels are often governed by single-gene differences (e.g., varietal specificity). (5) Practical and political considerations are central to the selection of targets for control with pathogens. (6) Demand from influential stakeholders for control and/or for a nonchemical or economically sustainable control typically drives the initiative as well as the continuance of biocontrol projects to their completion. (7) In the case of inundative, bioherbicide agents, the continuity and ultimate implementation of a project will be dictated by the prospects of economic returns from developing and using a pathogen. (8) The stakeholders’ perceptions of the effectiveness of a biocontrol program can be unpredictable, leading to conflicting views of “success.” In the final analysis, a good weed target for control by a pathogen is one that has strong stakeholder backing and the list of available pathogens for the target suggests a possibility of acceptable control at a cost that is competitive with those of other control options. While this conclusion is also applicable to target selection for insect biocontrol agents, it is more relevant for pathogens because of limited funding and personnel available for development of pathogens and the added cost and technological complexity of implementing bioherbicides compared to classical biocontrols.  相似文献   

4.
The rhizosphere is the narrow zone of soil surrounding the root that is subject to influence by the root. Rhizobacteria are plant-associated bacteria that are able to colonize and persist on roots. An understanding of the ecology of a microorganism is a fundamental requirement for the introduction of a microbial inoculant into the open environment. This is particularly true for biological control of root pathogens in the rhizosphere, where one is actively seeking to alter the ecological balance so as to favour growth of the host plant and to curtail the development of pathogens. Some strains of plant growth-promoting rhizobacteria can effectively colonize plant roots and protect plants from diseases caused by a variety of root pathogens and growth promotion of plants through direct stimulation of growth hormone. Such beneficial or plant health-promoting strains are emerging as promising biocontrol agents. They are suitable as soil inoculants either individually or in combination and may be compatible with current chemical pesticides. Considerable progress has been achieved using molecular genetic techniques to elucidate the important microbial factors or genetic traits involved in the suppression of fungal root diseases. Strategies utilizing molecular genetic techniques have been developed to complement the ongoing research ranging from the characterization and genetic improvement of a selected biocontrol agent to the measurement of its persistence and dispersal. Finally, biocontrol is considered as part of a disease control strategy like integrated pest management which offers a successful approach for the deployment of both agro-chemicals and biocontrol agents.  相似文献   

5.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   

6.
The topic of ecological, practical, and political considerations in the selection of weed targets for biological control has been widely discussed during the past two decades, mostly from the perspective of insect herbivores. For conceptual and practical purposes, plant pathogens have been treated in these discussions as if they are a subset of inoculative biocontrol agents, with little said about the inherent differences between pathogens and insects as biocontrol agents or the selection of weed targets for control by the inundative, bioherbicide strategy. Herein, I attempt to address the question of what makes a good biological control target for plant pathogens used as inoculative as well as inundative agents, basing my analysis on examples from the past three decades. Despite the small number of examples available for this analysis, the following generalizations can be made: (1) Weeds with robust capacity for vegetative regeneration are more difficult to control with pathogens than those that lack this trait. (2) A plant’s growth habit is not a reliable guide for target selection; weeds that have been successfully controlled include annual and biennial herbs, perennial shrubs, perennial vines, and trees, while numerous failures have been reported irrespective of the target’s growth habit or reproductive mode. (3) It is more challenging to control species with genetic heterogeneity and capacity for introgression than genetically homogeneous and reproductively conserved species. (4) Matching the target host’s susceptibility with the candidate pathogen’s virulence is of utmost importance for biocontrol success since host–pathogen interactions at the species and subspecies levels are often governed by single-gene differences (e.g., varietal specificity). (5) Practical and political considerations are central to the selection of targets for control with pathogens. (6) Demand from influential stakeholders for control and/or for a nonchemical or economically sustainable control typically drives the initiative as well as the continuance of biocontrol projects to their completion. (7) In the case of inundative, bioherbicide agents, the continuity and ultimate implementation of a project will be dictated by the prospects of economic returns from developing and using a pathogen. (8) The stakeholders’ perceptions of the effectiveness of a biocontrol program can be unpredictable, leading to conflicting views of “success.” In the final analysis, a good weed target for control by a pathogen is one that has strong stakeholder backing and the list of available pathogens for the target suggests a possibility of acceptable control at a cost that is competitive with those of other control options. While this conclusion is also applicable to target selection for insect biocontrol agents, it is more relevant for pathogens because of limited funding and personnel available for development of pathogens and the added cost and technological complexity of implementing bioherbicides compared to classical biocontrols.  相似文献   

7.
Among soil microorganisms, yeasts have received little attention as biocontrol agents of soil-borne fungal plant pathogens in comparison to bacterial, actinomycetes, and filamentous fungal antagonists. The mechanisms of action of potential antagonism by yeasts in relation to soil-borne fungal plant pathogens are expected to be similar to those involved with pathogens of aerial parts of the plant, including leaves and fruits. Several taxa of yeasts have been recorded as endophytes in plants, with a small proportion recorded to promote plant growth. The ability of certain taxa of yeasts to multiply rapidly, to produce antibiotics and cell wall-degrading enzymes, to induce resistance of host tissues, and to produce plant growth regulators indicates the potential to exploit them as biocontrol agents and plant growth promoters. More than ten genera of yeasts have been used to control postharvest diseases, especially of fruits. Suppression of classes of fungal pathogens of fruits and foliage that are similar to those associated with soil-borne fungal root pathogens, strongly suggests that yeasts also have potential for the biological control of diseases caused by soil-borne fungal plant pathogens, as is evident in reports of certain yeasts in suppressing some soil-borne fungal plant pathogens. This review explores the potential of soil yeasts to suppress a wider range of soil-borne fungal plant pathogens and to promote plant growth.  相似文献   

8.
Until recently, the majority of research on the biological control of aerial plant diseases was focused on control of bacterial pathogens. Such research led to the commercialization of the biocontrol agent Pseudomonas fluorescens A506, as BlightBan A506™, for control of fire blight of pear. In contrast, chemical fungicides typically have provided adequate control of most foliar fungal pathogens. However, fungicide resistance problems, concerns regarding pesticide residues and revocation of registration of certain widely used fungicides have led to increased activity in the development of biocontrol agents of foliar fungal pathogens. Much of this activity has centered around the use of Trichoderma spp and Gliocladium spp to control Botrytis cinerea on grape and strawberry. The biocontrol agent Trichoderma harzianum T39 is commercially available in Israel, as Trichodex ™, for control of grey mold in grapes and may soon be registered for use in the US. Also targeted primarily against a foliar disease of grapes, in this case powdery mildew caused by Uncinula necator, is the biocontrol agent Ampelomyces quisqualis AQ10, marketed as AQ10  TM biofungicide. Another promising development in the area of foliar disease control, though one which is not yet commercialized, is the use of rhizobacteria as seed treatments to induce systemic resistance in the host plant, a strategy which can protect the plant against a range of bacterial and fungal pathogens. Received 06 February 1997/ Accepted in revised form 05 June 1997  相似文献   

9.
The genus Pythium, with slightly over 280 described species, has been classified traditionally with other filamentous, coenocytic, sporangia-producing fungi as “Phycomyetes”. However, with recent advances in chemical, ultrastructural and molecular studies, Pythium spp. are now considered as “fungus-like organisms” or “pseudo-fungi” and are placed in the Kingdom Chromista or Kingdom Straminopila, distinct from the true fungi of the Kingdom Fungi or Kingdom Mycota. They are widely distributed throughout the world as soil saprophytes or plant pathogens. Because of the warm moist maritime climate, Taiwan, China, is especially rich in Pythium species. To date, 48 species of Pythium have been reported from Taiwan, China, with the dominant species being Py. vexans, Py. spinosum, Py. splendens, Py. aphanidermatum, Py. dissotocum and Py. acanthicum. There is no definite geographical distribution of Pythium spp. in Taiwan, China. Twenty nine species of Pythium have proven to be plant pathogens attacking a wide variety of woody and herbaceous plants primarily causing pre- and post-emergence seedling damping-off, root rot, stem rot and rotting of fruits, tubers and ginger rhizomes, resulting in serious economic losses. The most important plant pathogenic species include Py. aphanidermatum and Py. Myriotylum, which are most active during the hot and wet summer months; whereas Py. splendens, Py. spinosum, Py. ultimum and Py. irregulare cause the greatest damage in the cool winter. Most Pythium spp. are non-specific pathogens, infecting mainly juvenile or succulent tissues. This review attempts to assess the taxonomic position of the genus Pythium and provide details of the historical development of the study of Pythium as pathogens in Taiwan, China, causing diseases of sugarcane, trees, vegetables, fruits, specialty crops and flowering plants, as well as measures to control these diseases. Of special note is the introduction of the S-H mixture which, when used as soil amendment, effectively controls many soil-borne Pythium diseases during the early stages of plant growth. The diversity of Pythium species in Taiwan, China, is discussed in comparison with the situation in the mainland of China and suggestions are made to fully utilize Pythium spp. as agents for biological control, in industry and medicine.  相似文献   

10.
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Comprehensive biochemical and genetic approaches are now starting to reveal the complex signaling pathways that mediate plant disease resistance. Initiation of defense signaling often involves specific recognition of invading pathogens by the products of specialized host resistance (R) genes. Potential resistance signaling components have been identified by mutational analyses to be required for specific resistance in the model Arabidopsis and some crop species. Strikingly, many of the components share similarity to that of innate immune systems in animals. Evidence is also accumulating that plant pathogens have a number of ways to evade host defenses during the early stages of infection, similar to animal pathogens. These strategies are becoming much better understood in a number of plant–pathogen interactions. In this review, we focus on the current knowledge of host factors that control plant resistance and susceptibility to fungal pathogens. The knowledge accumulated in these studies will serve a fundamental basis for combating diseases in strategic molecular agriculture.  相似文献   

11.
Early research leading to the successful biological control of invasive species such as Opuntia spp., and Hypericum perforatum set examples and provided data useful for research programs that would follow. However, this early work failed to become established as a source of applicable principles for later workers in weed biocontrol. Recently, retrospective and parallel studies have been suggested as a means to reengage with earlier work to derive useful ideas and data to enhance future programs in weed biocontrol. Parallel studies by workers in plant community ecology on the nature of feedback elicited by plant species in their invaded and native range have shown the importance of soil microbial communities in effecting feedback. Retrospective reexamination of previous studies would likely provide clues to other insect–plant pathogen interactions in addition to those described by the author and others. The effects of invasive species in profoundly altering soil microbial communities point to the need for further studies on key microbial species contributing to or driving the impact of biocontrol. These collective data suggest that the desired goal of selecting for and utilizing stronger biocontrol agents to reduce nontarget effects and to increase the impact of biological control programs would be best served by prerelease studies that assess the propensity of a candidate agent for direct or indirect interaction with other agents. This could be assessed through the use of survival analysis. Overall, parallel empirical and retrospective studies should be a necessary part of how biological control is practiced.  相似文献   

12.
Soil solarization in combination with introduction of biocontrol agents (BCA) was evaluated as a potential disease management strategy for tomato damping-off caused by Pythium spp. A rifampicin resistant Pseudomonas fluorescens strain (PfT-8) and a carbendazim resistant Trichoderma harzianum strain (ThM-1) were introduced into soil following solarization. Tomato seeds were planted into treated field plots. The influence of soil solarization and application of biocontrol agents on damping-off incidence, plant biomass, rhizosphere population of introduced antagonists, and native Pythium spp. was assessed by two consecutive field trials. Damping-off incidence was significantly reduced in solarized plots compared to control. Soil inoculation of biocontrol agents into solarized plots resulted in the highest suppression of damping-off incidence (PfT-8 up to 92%; ThM-1 up to 83%), and increase in plant biomass (PfT-8 up to 66%; ThM-1 up to 48%) when compared to un-solarized control plots. Rhizosphere population of introduced biocontrol agents gradually increased (PfT-8 up to 102% and ThM-1 up to 84%) in solarized soils when compared to unsolarized control. The population of Pythium spp in rhizosphere soil was reduced up to 55% in solarized plots; whereas, application of BCA to solarized soils reduced the rhizosphere population of Pythium spp. by 86 and 82% in P. fluorescens and T. harzianum applied plots respectively.  相似文献   

13.
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays; however, they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.  相似文献   

14.
Postemergence damping-off of chilli caused by Pythium spp. is a common and serious problem in large chilli growing areas of India under the moist conditions that generally prevails during the sowing period. Therefore, in order to better understand this disease, an isolate belonging to the genus Pythium (Pythiales) was isolated from the infected chilli (Capsicum annuum L.) plant root parts collected from the fields of Chandauli district, Uttar Pradesh, India. Based on the congruence of cultural, morphological, cardinal growth rate and the sequence data analysis, the isolate was identified as Pythium graminicola. The molecular phylogenetic analysis based on ITS-rDNA sequences clustered the isolate with representative sequences for P. graminicola from GenBank in the Pythium clade. The isolate carbon utilization profiles were characterized using Biolog FF MicroPlate method. The results revealed that the isolate used a wide range of carbon sources, mainly carbohydrates, but also amino acids, suggesting the use of metabolic routes that include glycolysis/gluconeogenesis. Moreover, an in vitro colony growth inhibition assay was performed to determine the influence of chemical (fungicides) and biological (bacteria and fungi) antagonists over the pathogen using the poison plate and dual culture method, respectively. Overall, the results revealed that the presence of aggressive broad range biocontrol agents can be used as an effective environmentally friendly approach for management and control of damping-off in production systems. The antagonist can serve as a bio-efficient and eco-friendly alternative to synthetic fungicides for the development of an effective integrated pest management (IPM) system and obtaining higher yields.  相似文献   

15.
The tea plant (Camellia sinensis) is susceptible to anthracnose disease that causes considerable crop loss and affects the yield and quality of tea. Multiple Colletotrichum spp. are the causative agents of this disease, which spreads quickly in warm and humid climates. During plant–pathogen interactions, resistant cultivars defend themselves against the hemibiotrophic pathogen by activating defence signalling pathways, whereas the pathogen suppresses plant defences in susceptible varieties. Various fungicides have been used to control this disease on susceptible plants, but these fungicide residues are dangerous to human health and cause fungicide resistance in pathogens. The problem-solving approaches to date are the development of resistant cultivars and ecofriendly biocontrol strategies to achieve sustainable tea cultivation and production. Understanding the infection stages of Colletotrichum, tea plant resistance mechanisms, and induced plant defence against Colletotrichum is essential to support sustainable disease management practices in the field. This review therefore summarizes the current knowledge of the identified causative agent of tea plant anthracnose, the infection strategies and pathogenicity of C. gloeosporioides, anthracnose disease resistance mechanisms, and the caffeine-induced defence response against Colletotrichum infection. The information reported in this review will advance our understanding of host–pathogen interactions and eventually help us to develop new disease control strategies.  相似文献   

16.
植物内生菌及其防治植物病害的研究进展   总被引:78,自引:0,他引:78  
石晶盈  陈维信  刘爱媛 《生态学报》2006,26(7):2395-2401
综述了植物内生菌及其防治植物病害的研究进展.植物内生菌分布广,种类多,几乎存在于所有目前已研究过的陆生及水生植物中,目前全世界至少已在80个属290多种禾本科植物中发现有内生真菌,在各种农作物及经济作物中发现的内生细菌已超过120种.感染内生菌的植物宿主往往具有生长快速、抗逆境、抗病害、抗动物危害等优势,比未感染内生菌的植株更具生存竞争力.植物内生菌的防病机理主要表现在通过产生抗生素类,水解酶类,植物生长调节剂和生物碱类物质,与病原菌竞争营养物质,增强宿主植物的抵抗力以及诱导植物产生系统抗性等途径抑制病原菌生长.另外,对植物内生真菌和内生细菌的分离、筛选和检测方法;利用植物内生菌控制植物病害的途径如人工接种内生菌,利用内生菌代谢产生的抗生素以及将内生菌作为基因工程的载体菌等进行了综述.同时,对植物内生菌作为生物防治因子未来发展前景及存在的问题进行了讨论.利用植物内生菌作为生物防治因子进行大田防病,需要考虑它的病理学、生态学和形态学等方面的影响.  相似文献   

17.
猕猴桃果实易受多种病原真菌的侵染,采后易发生软腐病、灰霉病、青霉病等严重危害果实品质的真菌性病害。传统的有效防治方法主要为采前使用化学杀菌剂,但其易污染环境并可能危害人类健康。目前,已有一系列生物防治方法被研究并报道,这些方法可有效防控猕猴桃采后真菌病害:第一类为天然抑菌物质,包括植物提取物和其他天然物质;第二类为拮抗微生物,包括生防酵母、生防细菌、生防木霉,生防菌也能与物理及化学方法协同发挥作用。本文概述了各类生物防治方法在猕猴桃采后真菌病害绿色防控方面的研究进展及生防机理,并提出了目前存在的问题,最后展望了这一领域今后的研究方向。  相似文献   

18.
Some pathogenic phloem‐limited bacteria are a major threat for worldwide agriculture due to the heavy economic losses caused to many high‐value crops. These disease agents – phytoplasmas, spiroplasmas, liberibacters, and Arsenophonus‐like bacteria – are transmitted from plant to plant by phloem‐feeding Hemiptera vectors. The associations established among pathogens and vectors result in a complex network of interactions involving also the whole microbial community harboured by the insect host. Interactions among bacteria may be beneficial, competitive, or detrimental for the involved microorganisms, and can dramatically affect the insect vector competence and consequently the spread of diseases. Interference is observed among pathogen strains competing to invade the same vector specimen, causing selective acquisition or transmission. Insect bacterial endosymbionts are another pivotal element of interactions between vectors and phytopathogens, because of their central role in insect life cycles. Some symbionts, either obligate or facultative, were shown to have antagonistic effects on the colonization by plant pathogens, by producing antimicrobial substances, by stimulating the production of antimicrobial substances by insects, or by competing for host infection. In other cases, the mutual exclusion between symbiont and pathogen suggests a possible detrimental influence on phytopathogens displayed by symbiotic bacteria; conversely, examples of microbes enhancing pathogen load are available as well. Whether and how bacterial exchanges occurring in vectors affect the relationship between insects, plants, and phytopathogens is still unresolved, leaving room for many open questions concerning the significance of particular traits of these multitrophic interactions. Such complex interplays may have a serious impact on pathogen spread and control, potentially driving new strategies for the containment of important diseases.  相似文献   

19.
Antibiotic production by bacterial biocontrol agents   总被引:35,自引:0,他引:35  
Interest in biological control of plant pathogens has been stimulated in recent years by trends in agriculture towards greater sustainability and public concern about the use of hazardous pesticides. There is now unequivocal evidence that antibiotics play a key role in the suppression of various soilborne plant pathogens by antagonistic microorganisms. The significance of antibiotics in biocontrol, and more generally in microbial interactions, often has been questioned because of the indirect nature of the supporting evidence and the perceived constraints to antibiotic production in rhizosphere environments. Reporter gene systems and bio-analytical techniques have clearly demonstrated that antibiotics are produced in the spermosphere and rhizosphere of a variety of host plants. Several abiotic factors such as oxygen, temperature, specific carbon and nitrogen sources, and microelements have been identified to influence antibiotic production by bacteria biocontrol agents. Among the biotic factors that may play a determinative role in antibiotic production are the plant host, the pathogen, the indigenous microflora, and the cell density of the producing strain. This review presents recent advances in our understanding of antibiotic production by bacterial biocontrol agents and their role in microbial interactions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号