首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Linear RNA amplification using T7 RNA polymerase is useful in genome-wide analysis of gene expression using DNA microarrays, but exponential amplification using polymerase chain reaction (PCR) is still required for cDNA library preparation from single-cell quantities of RNA. We have designed a small RNA molecule called chum-RNA that has enabled us to prepare a single-cell cDNA library after four rounds of T7-based linear amplification, without using PCR amplification. Chum-RNA drove cDNA synthesis from only 0.49 femtograms of mRNA (730 mRNA molecules) as a substrate, a quantity that corresponds to a minor population of mRNA molecules in a single mammalian cell. Analysis of the independent cDNA clone of this library (6.6 × 105 cfu) suggests that 30-fold RNA amplification occurred in each round of the amplification process. The size distribution and representation of mRNAs in the resulting one-cell cDNA library retained its similarity to that of the million-cell cDNA library. The use of chum-RNA might also facilitate reactions involving other DNA/RNA modifying enzymes whose Michaelis constant (Km) values are around 1 mM, allowing them to be activated in the presence of only small quantities of substrate.  相似文献   

2.
Genomic sequencing of single microbial cells from environmental samples   总被引:1,自引:0,他引:1  
Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.  相似文献   

3.
Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.  相似文献   

4.
5.
Single-cell sequencing promotes our understanding of the heterogeneity of cellular populations, including the haplotypes and genomic variability among different generation of cells. Whole-genome amplification is crucial to generate sufficient DNA fragments for single-cell sequencing projects. Using sequencing data from single sperms, we quantitatively compare two prevailing amplification methods that extensively applied in single-cell sequencing, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Our results show that MALBAC, as a combination of modified MDA and tweaked PCR, has a higher level of uniformity, specificity and reproducibility.  相似文献   

6.
7.
8.
Linear amplification for deep sequencing (LADS) is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter. Ligated and size-selected DNA fragments are transcribed in vitro with high RNA yields. Subsequent cDNA synthesis is initiated from a primer complementary to the first adapter, ensuring that the library will only contain full-length fragments with two distinct adapters. Contrary to the severely biased representation of AT- or GC-rich fragments in standard PCR-amplified libraries, the sequence coverage in T7-amplified libraries is indistinguishable from that of nonamplified libraries. Moreover, in contrast to amplification-free methods, LADS can generate sequencing libraries from a few nanograms of DNA, which is essential for all applications in which the starting material is limited.  相似文献   

9.
Genome sequencing currently requires DNA from pools of numerous nearly identical cells (clones), leaving the genome sequences of many difficult-to-culture microorganisms unattainable. We report a sequencing strategy that eliminates culturing of microorganisms by using real-time isothermal amplification to form polymerase clones (plones) from the DNA of single cells. Two Escherichia coli plones, analyzed by Affymetrix chip hybridization, demonstrate that plonal amplification is specific and the bias is randomly distributed. Whole-genome shotgun sequencing of Prochlorococcus MIT9312 plones showed 62% coverage of the genome from one plone at a sequencing depth of 3.5x, and 66% coverage from a second plone at a depth of 4.7x. Genomic regions not revealed in the initial round of sequencing are recovered by sequencing PCR amplicons derived from plonal DNA. The mutation rate in single-cell amplification is <2 x 10(5), better than that of current genome sequencing standards. Polymerase cloning should provide a critical tool for systematic characterization of genome diversity in the biosphere.  相似文献   

10.
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-μl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.  相似文献   

11.
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.  相似文献   

12.
Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.  相似文献   

13.
14.
Due to the growth of interest in single-cell genomics, computational methods for distinguishing true variants from artifacts are highly desirable. While special attention has been paid to false positives in variant or mutation calling from single-cell sequencing data, an equally important but often neglected issue is that of false negatives derived from allele dropout during the amplification of single cell genomes. In this paper, we propose a simple strategy to reduce the false negatives in single-cell sequencing data analysis. Simulation results show that this method is highly reliable, with an error rate of 4.94×10-5, which is orders of magnitude lower than the expected false negative rate (~34%) estimated from a single-cell exome dataset, though the method is limited by the low SNP density in the human genome. We applied this method to analyze the exome data of a few dozen single tumor cells generated in previous studies, and extracted cell specific mutation information for a small set of sites. Interestingly, we found that there are difficulties in using the classical clonal model of tumor cell growth to explain the mutation patterns observed in some tumor cells.  相似文献   

15.
Initiation of T7 RNA chains by Escherichia coli RNA polymerase-T7 DNA complexes has been followed using incorporation of λ-32P-labeled ATP and GTP to determine the relation between the enzyme binding sites and RNA chain initiation sites on the T7 genome. If the period of RNA synthesis is limited to less than two minutes, the stoichiometry of RNA chain initiation can be measured in the absence of chain termination and re-initiation. About 70% of the RNA polymerase holoenzyme molecules in current enzyme preparations are able to rapidly initiate a T7 RNA chain. The ratio of ATP- to GTP-initiated T7 RNA chains is not altered by variations in the number of enzyme molecules added per DNA, nor by alterations in the ionic conditions employed for RNA synthesis. This suggests that RNA chain initiation sites are chosen randomly through binding of RNA polymerase to tight (class A) binding sites on T7 DNA.  相似文献   

16.
17.
18.
19.
Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naïve CD4+ T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naïve CD4+ T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号