首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pore-forming ability of the Bacillus thuringiensis toxin Cry9Ca, its two single-site mutants R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at R164 was evaluated under a variety of experimental conditions using an electrophysiological assay. All four toxin preparations depolarized the apical membrane of freshly isolated third-instar Manduca sexta midguts bathing in a solution containing 122 mM KCl at pH 10.5, but the 55-kDa fragment was considerably more active than Cry9Ca and its mutants. The activity of the latter toxins was greatly enhanced, however, when the experiments were conducted in the presence of fifth-instar M. sexta midgut juice. This effect was also observed after midgut juice proteins had been denatured by heating at 95 °C or after inorganic ions and small molecules had been removed from the midgut juice by extensive dialysis. A similar stimulation of toxin activity was also observed when the experiments were carried out in the presence of the lipids extracted from an equivalent volume of midgut juice. Depolarization of the cell membrane was also greatly enhanced, in the absence of midgut juice, by the addition of a cocktail of water-soluble protease inhibitors. These results indicate that, depending on the cleavage site and on the experimental conditions used, further proteolysis of the activated Cry9Ca toxin can either stimulate or be detrimental to its activity and that M. sexta midgut juice probably contains protease inhibitors that could play a major role in the activity of B. thuringiensis toxins in the insect midgut.  相似文献   

2.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

3.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

4.
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed.  相似文献   

5.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

6.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg2+, Ca2+ and Ba2+) and anions (SO42− and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

7.
The pore-forming domain of Bacillus thuringiensis insecticidal Cry toxins is formed of seven amphipathic α-helices. Because pore formation is thought to involve conformational changes within this domain, the possible role of its interhelical loops in this crucial step was investigated with Cry9Ca double mutants, which all share the previously characterized R164A mutation, using a combination of homology modeling, bioassays and electrophysiological measurements. The mutations either introduced, neutralized or reversed an electrical charge carried by a single residue of one of the domain I loops. The ability of the 28 Cry9Ca double mutants to depolarize the apical membrane of freshly isolated Manduca sexta larval midguts was tested in the presence of either midgut juice or a cocktail of protease inhibitors because these conditions had been shown earlier to greatly enhance pore formation by Cry9Ca and its R164A single-site mutant. Most mutants retained toxicity toward neonate larvae and a pore-forming ability in the electrophysiological assay, which were comparable to those of their parental toxin. In contrast, mutants F130D, L186D and V189D were very poorly toxic and practically inactive in vitro. On the other hand, mutant E129A depolarized the midgut membrane efficiently despite a considerably reduced toxicity, and mutant Q192E displayed a reduced depolarizing ability while conserving a near wild-type toxicity. These results suggest that the conditions found in the insect midgut, including high ionic strength, contribute to minimizing the influence of surface charges on the ability of Cry9Ca and probably other B. thuringiensis toxins to form pores within their target membrane.  相似文献   

8.
A field population (SZ) of Plutella xylostella, collected from the cabbage field in Shenzhen, Guangdong Province of China in 2002, showed 2.3-fold resistance to Cry1Aa, 110-fold to Cry1Ab, 30-fold to Cry1Ac, 2.1-fold to Cry1F, 5.3-fold to Cry2Aa and 6-fold resistance to Bacillus thuringiensis var. kurstaki (Btk) compared with a susceptible strain (ROTH). The SZBT strain was derived from the SZ population through 20 generations of selection with activated Cry1Ac in the laboratory. While the SZBT strain developed 1200-fold resistance to Cry1Ac after selection, resistance to Cry1Aa, Cry1Ab, Cry1F, and Btk increased to 31-, 1900-,>33- and 17-fold compared with the ROTH strain. However, little or no cross-resistance was detected to Cry1B, Cry1C and Cry2Aa in the SZBT strain. Genetic cross analyses between the SZBT and ROTH strains revealed that Cry1Ac-resistance in the SZBT strain was controlled by a single, autosomal, incompletely recessive gene. Binding studies with 125I-labeled Cry1Ac showed that the brush border membrane vesicles (BBMVs) of midguts from the resistant SZBT insects had lost binding to Cry1Ac. Allelic complementation tests demonstrated that the major Bt resistance locus in the SZBT strain was same as that in the Cry1Ac-R strain which has “mode 1” resistance to Bt. An F1 screen of 120 single-pair families between the SZBT strain and three field populations collected in 2008 was carried out. Based on this approach, the estimated frequencies of Cry1Ac-resistance alleles were 0.156 in the Yuxi population from Yunnan province, and 0.375 and 0.472 respectively in the Guangzhou and Huizhou populations from Guangdong province.  相似文献   

9.
A functional assessment of Bacillus thuringiensis (Bt) toxin receptors in the midgut of lepidopteran insects will facilitate understanding of the toxin mode of action and provide effective strategies to counter the development of resistance. In this study, we produced anti-aminopeptidase (APN) and anti-cadherin sera with purified Cry1Ac toxin-binding APN or cadherin fragments from Heliocoverpa armigera. Antisera were evaluated for their effects on Cry1Ac toxicity through bioassays. Our results indicated that both the anti-APN and anti-cadherin sera reduced Cry1Ac toxicity in vivo, although cadherin antiserum reduced toxicity more than APN antiserum. These results suggest that both APN and cadherin are involved in Cry1Ac intoxication of H. armigera, evidence that the pore formation model may be representative of Cry1Ac toxin mode of action in this insect.  相似文献   

10.
The combined effects of ionic strength, divalent cations, pH and toxin concentration on the pore-forming activity of Cry1Ac and Cry1Ca were studied using membrane potential measurements in isolated midguts of Manduca sexta and a brush border membrane vesicle osmotic swelling assay. The effects of ionic strength and divalent cations were more pronounced at pH 10.5 than at pH 7.5. At the higher pH, lowering ionic strength in isolated midguts enhanced Cry1Ac activity but decreased considerably that of Cry1Ca. In vesicles, Cry1Ac had a stronger pore-forming ability than Cry1Ca at a relatively low ionic strength. Increasing ionic strength, however, decreased the rate of pore formation of Cry1Ac relative to that of Cry1Ca. The activity of Cry1Ca, which was small at the higher pH, was greatly increased by adding calcium or by increasing ionic strength. EDTA inhibited Cry1Ac activity at pH 10.5, but not at pH 7.5, indicating that trace amounts of divalent cations are necessary for Cry1Ac activity at the higher pH. These results, which clearly demonstrate a strong effect of ionic strength, divalent cations and pH on the pore-forming activity of Cry1Ac and Cry1Ca, stress the importance of electrostatic interactions in the mechanism of pore formation by B. thuringiensis toxins.  相似文献   

11.
The effect of pH on the pore-forming ability of two Bacillus thuringiensis toxins, Cry1Ac and Cry1C, was examined with midgut brush border membrane vesicles isolated from the tobacco hornworm, Manduca sexta, and a light-scattering assay. In the presence of Cry1Ac, membrane permeability remained high over the entire pH range tested (6.5 to 10.5) for KCl and tetramethylammonium chloride, but was much lower at pH 6.5 than at higher pHs for potassium gluconate, sucrose, and raffinose. On the other hand, the Cry1C-induced permeability to all substrates tested was much higher at pH 6.5, 7.5, and 8.5 than at pH 9.5 and 10.5. These results indicate that the pores formed by Cry1Ac are significantly smaller at pH 6.5 than under alkaline conditions, whereas the pore-forming ability of Cry1C decreases sharply above pH 8.5. The reduced activity of Cry1C at high pH correlates well with the fact that its toxicity for M. sexta is considerably weaker than that of Cry1Aa, Cry1Ab, and Cry1Ac. However, Cry1E, despite having a toxicity comparable to that of Cry1C, formed channels as efficiently as the Cry1A toxins at pH 10.5. These results strongly suggest that although pH can influence toxin activity, additional factors also modulate toxin potency in the insect midgut.  相似文献   

12.
The microlepidopteran Prays oleae is one of the main insect pests causing significant crop losses in the Mediterranean olive groves. Bacillus thuringiensis based insecticides are being successfully used to minimize the impact of the second and third generations of this pest. However, because of its very small size and difficulty of rearing, very few studies have been carried out to determine the potency and mode of action of B. thuringiensis Cry proteins in this insect. In this study, Cry1Ac, Cry1Ca, and Cry1Fa proteins were shown to be toxic to third instar larvae of P. oleae. Furthermore, binding assays with 125I-Cry1Ac and brush border membrane vesicles from midguts of last-instar larvae showed specific binding sites for Cry1Ac that are shared, with low affinity, by Cry1Ca and Cry1Fa.  相似文献   

13.
The effect of Bacillus thuringiensis toxins on the permeability of the luminal membrane of Manduca sexta midgut columnar epithelial cells is strongly influenced by several biophysical and biochemical factors, including pH, ionic strength, and divalent cations, suggesting an important role for electrostatic interactions. The influence of these factors can differ greatly, however, depending on the toxin being studied, even for closely related toxins such as Cry1Ac and Cry1Ca. In the present study, the possibility of using temperature changes as a tool for controlling the rate and extent of pore formation in midgut brush border membrane vesicles was evaluated. Lowering temperature gradually decreased the rate of pore formation, but had little effect on the permeability of vesicles previously incubated with toxin at room temperature. The formation of new pores, following incubation of the vesicles with toxin, could thus be almost abolished by rapidly cooling the vesicles to 2 degrees C. Using this approach, changes in the rate of pore formation could be more easily distinguished from alterations in the properties of the pores formed, thus allowing a more detailed analysis of the kinetics and mechanism of pore formation.  相似文献   

14.
Bacillus thuringiensis Cry toxins form pores in the apical membrane of insect larval midgut cells. To investigate their mechanism of membrane insertion, mutants in which cysteine replaced individual amino acids located within the pore-forming domain of Cry1Aa were chemically modified with sulfhydryl-specific reagents. The thiol group of cysteine was highly susceptible to oxidation and its reactivity was significantly increased when the toxins were purified under reducing conditions. Addition of a biotin group to the cysteine had little effect on the ability of the toxins to permeabilize Manduca sexta brush border membrane vesicles except for a slight reduction in activity for S252C and a large increase in activity for Y153C. The activity of Y153C was also significantly increased after modification by reagents that added an aromatic or a charged group to the cysteine. When permeability assays were performed in the presence of streptavidin, a large biotin-binding protein, the pore-forming activity of several mutants, including Y153C, where the altered residue is located within the hairpin comprising helices α4 and α5, or in adjacent loops, was significantly reduced. These results support the umbrella model of toxin insertion.  相似文献   

15.
The binding and pore formation properties of four Bacillus thuringiensis Cry1 toxins were analyzed by using brush border membrane vesicles from Spodoptera exigua and Spodoptera frugiperda, and the results were compared to the results of toxicity bioassays. Cry1Fa was highly toxic and Cry1Ac was nontoxic to S. exigua and S. frugiperda larvae, while Cry1Ca was highly toxic to S. exigua and weakly toxic to S. frugiperda. In contrast, Cry1Bb was active against S. frugiperda but only marginally active against S. exigua. Bioassays performed with iodinated Cry1Bb, Cry1Fa, and Cry1Ca showed that the effects of iodination on toxin activity were different. The toxicities of I-labeled Cry1Bb and Cry1Fa against Spodoptera species were significantly less than the toxicities of the unlabeled toxins, while Cry1Ca retained its insecticidal activity when it was labeled with 125I. Binding assays showed that iodination prevented Cry1Fa from binding to Spodoptera brush border membrane vesicles. 125I-labeled Cry1Ac, Cry1Bb, and Cry1Ca bound with high-affinities to brush border membrane vesicles from S. exigua and S. frugiperda. Competition binding experiments performed with heterologous toxins revealed two major binding sites. Cry1Ac and Cry1Fa have a common binding site, and Cry1Bb, Cry1C, and Cry1Fa have a second common binding site. No obvious relationship between dissociation of bound toxins from brush border membrane vesicles and toxicity was detected. Cry1 toxins were also tested for the ability to alter the permeability of membrane vesicles, as measured by a light scattering assay. Cry1 proteins toxic to Spodoptera larvae permeabilized brush border membrane vesicles, but the extent of permeabilization did not necessarily correlate with in vivo toxicity.  相似文献   

16.
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.  相似文献   

17.
The toxicity of seven Bacillus thuringiensis Cry protoxins was tested against neonate larvae of Epinotia aporema, a major soybean pest in Argentina and South America. The most active protoxins were Cry1Ab and Cry1Ac, with LC50 values of 0.55 and 1.39 microg/ml, respectively. Cry1Aa, Cry1Ba, Cry1Ca, and Cry9Ca protoxins were equally toxic with LC50 values about 4 microg/ml, whereas Cry1Da was not toxic. The synergistic activity of different protoxin-mixtures was also analyzed, no synergistic effect between the Cry proteins was observed, with the exception of the poorly toxic Cry1Ba/Cry1Da mixture that was slightly synergistic. The binding capacity of individual Cry1 and Cry9Ca toxins to brush border membranes of E. aporema was also determined. The non-toxic Cry1Da toxin was the only toxin unable to bind to E. aporema membranes. In addition the heterologous competition experiments showed that Cry1Ab and Cry1Ac toxins share a common binding site. Based on these data, we propose that Cry1Ab and Cry1Ac toxins could be used in the biological control of E. aporema.  相似文献   

18.
The bifunctional adenylate cyclase toxin (ACT or CyaA) of Bordetella pertussis invades target cells via transport through the cytoplasmic membrane. The membrane potential represents thereby an important factor for the uptake in vivo. Previous studies demonstrated that adenylate cyclase (AC) delivery into cells requires a negative membrane potential inside the cells. The results of lipid bilayer experiments with ACT presented here indicated that two different types of pore-like structures are formed by ACT dependent on the orientation of the electrical potential across the membranes. Pore formation at a positive potential at the cis side of the membranes, the side of the addition of the toxin, was fast and its conductance had a defined size, whereas at negative potential the pores were not defined, had a reduced pore-forming activity and a very short lifetime. Fluctuations inserted at positive potentials showed asymmetric current-voltage relationships for positive and negative voltages. Positive potentials at the cis side resulted in an increasing current, whereas at negative potentials the current decreased or remained at a constant level. Calcium ions enhanced the voltage dependence of the ACT pores when they were added to the cis side. The single-pore conductance was strongly affected by the variation of the pH value and increased in 1M KCl with increasing pH from about 4 pS at pH 5 to about 60 pS at pH 9. The ion selectivity remained unaffected by pH. Experiments with ACT mutants revealed, that the adenylate cyclase (AC) and repeat (RT) domains were not involved in voltage and pH sensing.  相似文献   

19.
Solubilized protoxins of nine Cry1 and one hybrid Cry1 delta-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still less active. Cry1Ca and Cry1Cb showed no activity. In vitro trypsin activation increased activity of all eight active delta-endotoxins, and dramatically enhanced toxicity of hybrid SN19, Cry1Aa, Cry1Ac, and Cry1Fa. The differences between toxicity of proteins before and after trypsin digestion suggests that proteolytic activation in the C. pomonella digestive tract plays a critical role for the activity of Cry proteins against this insect.  相似文献   

20.
Bacillus thuringiensis Cry1Ac toxin is 100 times less toxic than Cry1C to Mamestra brassicae. An R(423)S mutation abolishes Cry1Ac toxin proteolysis in M. brassicae gut juice but does not increase its toxicity to this insect. The CryAAC hybrid toxin (1Ac/1Ac/1Ca) is toxic to M. brassicae but is susceptible to gut protease digestion at the R(423) residue. Accordingly we have investigated the effect of the R(423)S mutation in CryAAC on its toxicity for M. brassicae and Pieris brassicae. Bioassays demonstrated that the R(423)S mutation slightly increased the toxicity of CryAAC for M. brassicae by having a significantly inhibitory effect on the growth of surviving larvae. The mutant hybrid was still highly toxic to P. brassicae. Features of CryAACR(423)S such as, (1) stability in M. brassicae gut juice and (2) crystal solubility were investigated. Computer simulations suggest that a possible major increase in flexibility in the CryAAC loop beta7/beta8 (G(391)-P(397)) caused by the R(423)S substitution could be a reason for the increase in M. brassicae toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号