首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The coordination between Al(III) and sialic acid (N-acetylneuraminic acid, HL, pKa = 2.58 ± 0.01) was studied by potentiometric titrations at 25 °C in aqueous 0.2 M KCl, by 1H NMR, and by electrospray ionization mass spectrometry (ESI-MS). The potentiometric measurements gave the following aluminium complex stoichiometries and stability constants: , log β(AlLH−2) = −6.34 ± 0.02, and log β(AlL2H−1) = −1.14 ± 0.04. The 1H NMR spectra yielded structural information on species . The ESI-MS data confirmed the metal-ligand stoichiometry of the complexes.The metal-ligand speciation at micromolar Al(III) concentrations (i.e., under in vivo conditions) at physiological pH values reveals that considerable amount of Al(III) is complexed. This suggests that the toxic effect of Al(III) towards cellular membranes might be due to its coordination by protein-bound sialic acid.  相似文献   

2.
The kinetics of the reaction of Cr(CN)5(H2O)2− with NCS and were studied at pH 5.0 and at pH 6.3-7.0, respectively, as a function of the temperature between 25.0 and 55.0 °C, and at various ionic strengths. Anation occurs in competition with aquation of CN, with rate constants that exhibit less-than-first-order dependence on the concentration of the entering anions. The results are interpreted in terms of ligand interchange in a context of association of the two reacting anions mediated by the Na+ or Ca2+ counterions. The degree of aggregation depends mainly on the total cationic charge rather than on the ionic strength, and is ca. 2-fold larger for than for NCS. Within the associated species, is a better entering ligand than NCS by a factor of 4.5. The Cr(CN)5(NCS)3− and Cr(CN)5(N3)3− complexes were also synthesized, and the rates of aquation of NCS and were measured at pH 5.0 and between 55.0 and 80.0 °C, over the same range of ionic strengths. The ionic strength enhances the anation rates but has little effect on the aquation rates. The average activation enthalpies of the interchange step are 80 ± 3 and 76 ± 3 kJ mol−1 for entry of NCS and , respectively. Those of the corresponding aquation reactions are 94 ± 4 and 107 ± 4 kJ mol−1. Within error limits, all ΔH values are independent of the ionic strength. The results are consistent with an Id mechanism for substitution in Cr(CN)5Xz complexes.  相似文献   

3.
The aquation of the title complex cation in aqueous perchloric acid proceeded via two steps, both postulated to be the proton attack on the oxygen atom which binds the acetate ligand to the metal centre, followed by Fe-O bond cleavage. This was followed by rapid decomposition to produce aqueous iron(III) and acetate ions. The first-order rate constants for the first and second steps at 25 °C are: k1 = (4.16 ± 0.58) × 10−2 s−1 and k2 = (2.09 ± 0.42) × 10−3 s−1, respectively, and their corresponding activation parameters are . The spontaneous hydrolysis rate constants for the first and second steps were also determined at 25 °C and ionic strength of 1 mol dm−3 and they are k0 = (3.10 ± 0.82) × 10−3 s−1 and , respectively. The corresponding activation parameters are .  相似文献   

4.
5.
The protonation constants of 1,3,5-trideoxy-1,3,5-tris(2-hydroxyl-benzyl)amino-cis-inositol (thci) in I = 1 M (NaClO4) were determined to be: pKa1 5.96 ± 0.03, pKa2 7.21 ± 0.01, pKa3 8.32 ± 0.07, pKa4 8.95 ± 0.06. The solvent extraction studies were consistent with the formation of the Ln(thci)3+ and complexes. The log of the stability constants (log β1 and log β2) at 25 °C in 1 M (NaClO4) at pH 4 for formation of these complexes are reported. Laser luminescence measurements of the 7F0-5D0 transition of Eu(III) complexed by thci indicated two species. The shifts in the peaks relative to that of Eu(aq)3+ were comparable to the values reported for other complexes of Eu(III) with organic ligands, but the intensities were greater. Luminescence lifetime measurements of the fluorescence spectra indicated that the complex has 5 inner sphere water molecules bound to the Eu(III) cation at pH 6.71-8.52. This was consistent with bidentate chelation of Eu(III) with each thci molecule. gaussian view energy calculations indicated bonding for M(III) to the amino and hydroxyl groups of the cyclohexanetriol and (2-hydroxybenzyl)amino moieties in the Ln(thci)3+ complex.  相似文献   

6.
The stability constants of Am+3, Cm3+ and Eu3+ with ortho silicate, were measured at pH 3.50 and in ionic strengths of 0.20-1.00 M (NaClO4) by the solvent extraction method. The Am+3, Cm3+ and Eu3+ forms 1:1 complex with ortho silicate ion at pH 3.60 with the stability constant (log β1) value of 8.02 ± 0.10, 7.78 ± 0.08 and 7.81 ± 0.11, respectively. The stability of these metal ions decrease with increased ionic strength from 0.20 to 1.00 M (NaClO4) for silicic acid concentrations of 0.002-0.020 M. Increasing silicic acid concentration above 0.02 M increased the amount of M3+ extracted into the organic phase, contrary to the trend usually observed for increased ligand concentration in solvent extraction. This reversed trend is likely due to the extraction of cationic species of silicic acid by HDEHP. Aging time (60-300 min) had no effect on the stability constant of these metal ions for 0.002-0.020 M silicic acid at pH 3.50 and I = 0.20 M (NaClO4).The fraction of polymeric silicic acid present in solutions of 0.20-4.50 M NaClO4 solutions at pH 3.0-10.0, T = 0-60 °C and aging time = 5-300 min was measured for determination of the silicomolybdate reaction to ascertain the proper conditions to study metal-silicate complexation.  相似文献   

7.
The binary complexation of Am3+, Cm3+and Eu3+ with citrate has been studied at I = 6.60 m (NaClO4), pcH 3.60 and in the temperatures range of 0-60 °C employing a solvent extraction technique with di-(2-ethylhexyl)phosphoric acid/heptane. Two complexes, MCit and , were formed at all temperatures. For the three metal ions, the log β101 was between 5.9 and 6.2 and log β102 between 10.2 and 10.6 at 25 °C. The thermodynamic parameters for the Am-Cit system have been calculated from the temperature dependence of the β101 and β102 values. Positive enthalpy and entropy values for the formation of both complexes are interpreted as due to the contributions from the dehydration of the metal ions exceeding the exothermic cation-anion pairing. The formation of the ternary complex M(EDTA)(Cit)4− (M = Cm and Eu) was measured to have large stability constants (log β111 between 20.9 and 24.4) at 25 and 60 °C. Time resolved laser luminescence spectroscopy and lifetime measurement data validated the nature of the complexes of Eu(III) formed in the presence of Cit and EDTA + Cit in 6.60 m (NaClO4) solution.  相似文献   

8.
Ring coupled bimetallic derivatives (μ-η5:5-C5H4C5H4)[Nb(CO)4]2 and [μ-CH25-C5H4)2][M(CO)4]2, where M = Nb and Ta have been prepared. The molecular structures of the latter two compounds have been determined: , triclinic, , a = 8.028(2) Å, b = 11.414(1) Å, c = 12.711(2) Å, α = 75.020(8)°, β = 80.34(2)°, γ = 79.46(2)°, V = 1097.3(4) Å3, Z = 2, R(F) = 2.79%; [μ-CH25-C5H4)2][Ta(CO)4]2, triclinic, , a = 7.815(3) Å, b = 10.275(4) Å, c = 13.135(4) Å, α = 104.25(3)°, β = 100.26(4)°, γ = 96.86(3)°, V = 991.2(6) Å3, Z = 2, R(F) = 3.00%.  相似文献   

9.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

10.
The reaction of with H2O2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 26.4 ± 0.5 s−1. The rate law shows a simple inverse dependence on [H+] that is consistent with a rapidly maintained equilibrium between and its hydrolyzed form Co(H2O)5(OH)2+, followed by the rate controlling step, i.e. oxidation of H2O2 by Co(H2O)5(OH)2+.  相似文献   

11.
For the first time, use of benzidine as a structure-directing agent has resulted in the crystallization of two novel organic/inorganic hybrid molybdates under hydrothermal condition (180 °C and autogenous pressure). The presence of monoprotonated benzidinium ions in aqueous molybdate solution appears to engineer two new hybrid solids: one-dimensional chains in [H2NC12H8NH3]2Mo2O7, 1 (a = 5.9686, b = 7.0761 and c = 14.3293 Å, α = 77.17°, β = 85.25° and γ = 88.56°; and Z = 2) and two-dimensional step-wise layered molybdate [H2NC12H8NH3]2Mo5O16, 2 (a = 5.6843, b = 14.3024 and c = 19.4787Å, α = 108.1°, β = 98.4° and γ = 90.0°; , Z = 2). 1 is an unusual solid wherein the anionic chains are charge compensated by counter cations which also act as ligands to the metal and 2 is a new layered molybdate built of MoO5 square pyramids and MoO6 octahedra.  相似文献   

12.
The coordination behaviour of ferrocenylthiosemicarbazone was investigated in a trinuclear [Ni(Fctsc)2] complex. The structure of the complex has been studied by X-ray crystallography. The complex crystallizes in rhombohedral space group with six molecules per unit cell has the dimensions of a = 28.8042(2) Å, b = 28.8042(2) Å and c = 19.5131(3) Å, α = 90°, β = 90°, γ = 120°. The electronic communication between the metal centers has been studied by cyclic voltammetry.  相似文献   

13.
Reaction of 4-amino-6-methyl-1,2,4-triazin-thione-5-one (AMTTO, 1) with 2-thiophenecarboxaldehyde and 2-furaldehyde led to the corresponding iminic compounds 6-methyl-4-[thiophene-2-yl-methylene-amino]-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (TAMTTO, 2) and 4-[furan-2-yl-methylene-amino]-6-methyl-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (FAMTTO, 3). Treatment of 2 with AgNO3 gave the complex [Ag2(TAMMTO)4](NO3)2 · 4MeOH (4) and of 2 and 3 with [Ag(PPh3)2]NO3 gave the complexes [Ag(TAMTTO)(PPh3)2]NO3 · 1.5THF (5) and [Ag(FAMTTO)(PPh3)2]NO3 (6), respectively. All the compounds have been characterized by elemental analyses, IR spectroscopy and mass spectrometry. Compound 2 and all the complexes have been characterized by X-ray diffraction studies, respectively. In addition, 5 and 6 have been characterized by 31P NMR spectroscopy. Crystal data for 2 at −80 °C: monoclinic, space group C2/c, a=2319.6(2), b=609.8(1), c=1673.6(2) pm, β=106.14(1)°, Z=8, R1=0.0523; for 4 at −80 °C: triclinic, space group , a=877.6(1), b=1085.2(1), c=1557.7(2) pm, α=77.14(1)°, β=80.87(1)°, γ=78.18(1)°, Z=1, R1=0.0407; for 5 at 20 °C: triclinic, space group , a=1151.1(2), b=1225.1(2), c=1887.4(3) pm, α=78.04(1)°, β=86.20(1)°, γ=76.03(1)°, Z=2, R1=0.0662; for 6 at −80 °C: triclinic, space group , a=1189.7(2), b=1387.8(2), c=1410.9(2) pm, α=94.74(2)°, β=95.12(2)°, γ=112.41(2)°, Z=2, R1=0.0511.  相似文献   

14.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

15.
The redox potentials Em(QA/) of the primary quinone electron acceptor QA in oxygen-evolving photosystem II complexes of three species were determined by spectroelectrochemistry. The Em(QA/) values were experimentally found to be −162 ± 3 mV for a higher plant spinach, −171 ± 3 mV for a green alga Chlamydomonas reinhardtii and −104 ± 4 mV vs. SHE for a red alga Cyanidioschyzonmerolae. On the basis of possible deviations for the experimental values, as estimated to differ by 9-29 mV from each true value, plausible causes for such remarkable species-dependence of Em(QA/) are discussed, mainly by invoking the effects of extrinsic subunits on the delicate structural environment around QA.  相似文献   

16.
Tao Y  Xu W 《Carbohydrate research》2008,343(18):3071-3078
A water-insoluble hyperbranched β-d-glucan (TM3a), extracted from sclerotia of Pleurotus tuber-regium, was treated by microwave exposure to improve its solubility in water. This method led to complete dissolution of the TM3a polysaccharide in 0.02 wt % aqueous NaN3. Various treatment periods were tested, and optimal conditions corresponded to 35 s at 765 W. The solution properties of TM3a in water were studied systematically by using size-exclusion chromatography combined with laser light scattering, viscometry, and dynamic light scattering at 25 °C. The dependences of intrinsic viscosity ([η]), radius of gyration (), and hydrodynamic radius (Rh) on weight average molecular weight (Mw) for TM3a in 0.02 wt % aqueous NaN3 at 25 °C were found to be , , and in the Mw range from 8.20 × 105 to 4.88 × 106. The fractal dimension, ratio of , and the <r2>o/Mw value of TM3a were calculated and discussed. The results indicated that TM3a existed in a sphere-like conformation in 0.02 wt % aqueous NaN3. Furthermore, by using transmission electron microscopy, we observed directly the spherical molecules of TM3a. This work gave valuable information on improvement of solubility and chain conformation characterization of the water-insoluble polysaccharide in water.  相似文献   

17.
An azomethin-zinc complex, bis[salicylidene(4-dimethylamino)aniline]zinc(II) (Zn(sada)2) was synthesized and structurally characterized by single-crystal X-ray crystallography. Crystal data for Zn(C15H15N2O)2 was determined as follows: space group, triclinic, ; a = 10.2791(9) Å, b = 16.5008(14) Å, c = 17.5984(15) Å, α = 114.830(2)°, β = 96.579(2)°, γ = 97.674(2)°, Z = 4. Through thermal analysis characterization and FT-IR spectra, this complex was proved to have good thermal stability. The vapor-deposited films exhibited uniform and environment-stable morphology. The light emission and charge transporting performance of Zn(sada)2 in organic light emitting diodes (OLEDs) were investigated preliminarily, and the results indicated the superior electron transporting property of this complex. Compared with the typical bilayer device of N,N′-diphenyl-N,N′-bis(1-naphthyl)-benzidine (NPB)/tris-(8-hydroxyquinoline)aluminum (Alq3), the device with Zn(sada)2 as the electron transporting layer exhibited a much lower turn-on voltage of 2.5 V (it is usually 3.5 V for an NPB/Alq3 device).  相似文献   

18.
The system was studied at 25 °C and at I = 0.1 M NaClO4 using hydrodynamic voltammetry, gold potentiometry, UV-Vis spectrophotometry and Raman spectroscopy. The presence of two mixed-ligand species, Au(S2O3)(SO3)3− and , was detected from the Raman experiments and supported by the gold potentiometric experiments. The stepwise formation constant, log K11r, for the reaction was found to be 1.1 (r = 1) and 4.8 (r = 2) from the hydrodynamic voltammetric experiments.  相似文献   

19.
20.
The symmetrical anionic and neutral dimers [H(TMSO)2]2trans-[{RuCl4(TMSO)}2](μ-pyz) (1), and mer-[{RuCl3(TMSO)2}2](μ-pyz) (2) were isolated by the reaction of [H(TMSO)] trans-[RuCl4(TMSO)2] and mer-[RuCl3(TMSO)3] with heterocyclic nitrogen donor ligand pyrazine (pyz) at room temperature. These complexes can be regarded as unprecedented examples in the general Creutz-Taube family of ruthenium dimers. Each ruthenium center in 1 and 2 has a coordination environment akin to that of known anionic and neutral monomeric Ru(III) complexes. Crystals of 1 · acetone are orange, needle like, space group , a=10.419(3) Å, b=10.539(3) Å, c=12.595(5) Å, α=69.837(16)°, β=69.968(15)°, γ=74.330(15)° and crystals of 2 · 4TMSO are orange prisms, trigonal, space group , a=33.971(5) Å, b=33.971(5) Å, c=12.210(2) Å, α=90°, β=90° and γ=120°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号