首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu X  Li Y 《Developmental biology》1999,208(1):233-243
The Src family of nonreceptor tyrosine kinases has been implicated in many signal transduction pathways. However, due to a possible functional redundancy in vertebrates, there is no genetic loss-of-function evidence that any individual Src family member has a crucial role for receptor tyrosine kinase (RTK) signaling. Here we show that an extragenic suppressor of Raf, Su(Raf)1, encodes a Drosophila Src family gene Src42A. Characterization of Src42A mutations shows that Src42A acts independent of Ras1 and that it is, unexpectedly, a negative regulator of RTK signaling. Our study provides the first evidence that Src42A defines a negative regulatory pathway parallel to Ras1 in the RTK signaling cascade. A possible model for Src42A function is discussed.  相似文献   

2.
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. The checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. The ira1D ira2D recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery, and implicates the Ras signaling pathway as an important regulator of mitotic events.  相似文献   

3.
4.
Ras is a low-molecular-weight guanine nucleotide (GDP/GTP)-binding protein that transduces signals for growth and differentiation in eukaryotes. In mammals, the importance of Ras in regulating growth is underscored by the observation that activating mutations in ras genes are found in many animal tumors. Colletotrichum trifolii is a filamentous fungal pathogen of alfalfa which causes anthracnose disease. To investigate signaling pathways that regulate growth and development in this fungus, a gene encoding a Ras homolog (CT-Ras) was cloned from C. trifolii. CT-Ras exhibited extensive amino acid similarity to Ras proteins from higher and lower eukaryotes. A single amino acid change resulting in mutationally activated CT-Ras induced cellular transformation of mouse (NIH 3T3) fibroblasts and tumor formation in nu/nu mice. In Colletotrichum, mutationally activated CT-Ras induced abnormal hyphal proliferation and defects in polarized growth, and significantly reduced differentiation in a nutrient-dependent manner. These results show that C. trifolii Ras is a functional growth regulator in both mammals and fungi, and demonstrate that proper regulation of Ras is required for normal fungal growth and development. Received: 20 October 1998 / Accepted: 23 April 1999  相似文献   

5.
6.
 Competence for cell fate determination and cellular differentiation is under tight control of regulatory genes. Yan, a nuclear target of receptor tyrosine kinase (RTK) signaling, is an E twenty six (ETS) DNA-binding protein that functions as a negative regulator of cell differentiation and proliferation in Drosophila. Most members of RTK signaling pathways are highly conserved through evolution, yet no yan orthologues have been identified to date in vertebrates. To investigate the degree of yan conservation during evolution, we have characterized a yan homologue from a sibling species of D. melanogaster, D. virilis. Our results show that the organization, primary structure and expression pattern of yan are highly conserved. Both genes span over 20 kb and contain four exons with introns at identical positions. The areas with highest amino acid similarity include the Pointed and ETS domain but there are other discrete regions with a high degree of similarity. Phylogenetic analysis reveals that yan’s closest relative is the human tel gene, a negative regulator of differentiation in hematopoetic precursors. In both species, Yan is dynamically expressed beginning as early as stage 4/5 and persisting throughout embryogenesis. In third instar larvae, Yan is expressed in and behind the morphogenetic furrow of the eye imaginal disc as well as in the laminar precursor cells of the brain. Ovarian follicle cells also contain Yan protein. Conservation of the structure and expression patterns of yan genes strongly suggests that regulatory mechanisms for their expression are also conserved in these two species. Received: 3 November 1998 / Accepted: 9 December 1998  相似文献   

7.
Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the R7 photoreceptor cell. Components of the signal transduction pathway activated by Sev in the R7 precursor include proteins encoded by the gap1, drk, Sos, ras1 and raf loci. In this report we present evidence that a Drosophila MAP kinase, ERK-A, is encoded by the rolled locus and is required downstream of raf in the Sev signal transduction pathway.  相似文献   

8.
Chen F  Rebay I 《Current biology : CB》2000,10(15):943-946
Signaling by DER, the Drosophila epidermal growth factor receptor tyrosine kinase (RTK), is essential for proper migration and survival of midline glial cells (MGCs) in the embryonic central nervous system (CNS) [1-4]. We recently isolated a gene called split ends (spen) in a screen designed to identify new components of the RTK/Ras pathway [5]. Drosophila Spen and its orthologs are characterized by a distinct set of RNA recognition motifs (RRMs) and a SPOC domain, a highly conserved carboxy-terminal domain of unknown function [5-7]. To investigate spen function in the context of RTK signaling, we examined the consequences of spen loss-of-function mutations on embryonic CNS development. We found that spen was required for normal migration and survival of MGCs and that embryos lacking spen had CNS defects strikingly reminiscent of those seen in mutants of several known components of the DER signaling pathway. In addition, spen interacted synergistically with the RTK effector pointed. Using MGC-targeted expression, we found that increased Ras signaling rescued the lethality associated with expression of a dominant-negative spen transgene. Therefore, spen encodes a positively acting component of the DER/Ras signaling pathway.  相似文献   

9.
10.
11.
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. the checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. the ira1Δ ira2Δ recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery and implicates the Ras signaling pathway as an important regulator of mitotic events.Key words: DNA damage checkpoint, Ras signaling, budding yeast, cAMP-dependent protein kinase, anaphase promoting complex, neurofibromatosis type 1  相似文献   

12.
13.
14.
15.
16.
 The signal transduction pathway controlling determination of the identity of the R7 photoreceptor in the Drosophila eye is shown to harbor high levels of naturally occurring genetic variation. The number of ectopic R7 cells induced by the dosage-sensitive Sev S11.1 transgene that encodes a mildly activated form of the Sevenless tyrosine kinase receptor is highly sensitive to the wild-type genetic background. Phenotypes range from complete suppression to massive overproduction of photoreceptors that exceeds reported effects of known single gene modifiers, and are to some extent sex-dependent. Signaling from the dominant gain-of-function Drosophila Epidermal Growth Factor Receptor (DER-Ellipse) mutations is also sensitive to the genetic backgrounds, but there is no correlation with the effects on Sev S11.1 . This implies that different genes and/or alleles modify the two activated receptor genotypes. The evolutionary significance of the existence of high levels of genetic variation in the absence of normal phenotypic variation is discussed. Received: 20 September 1997 / Accepted: 10 November 1997  相似文献   

17.
18.
To identify mutations in genes that are genetically linked to rsm1, we performed a synthetic lethal genetic screen in the fission yeast, Schizosaccharomyces pombe. Four mutations that showed synthetic lethality in combination with the rsm1null allele were isolated from approximately 320,000 colonies and defined in three complementation groups. One mutant (SLrsm1) exhibited a significant accumulation of poly(A)+ RNA in the nucleus under synthetic lethal conditions, while the rest had no mRNA export defects. In addition, some genes (spmex67, rae1, or mlo3) required for mRNA export complemented the growth defects of the identified mutants. These results suggest that the isolated mutants contain mutations in genes that are involved in mRNA export and/or pre-mRNA retention.  相似文献   

19.
We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gap1m, from rat brain. Gap1mis considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gap1m. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human–mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22–q23.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号