首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
2.
The distribution and proportion of the sexual species Rana lessonae to the hemiclonal hybrid R. esculenta among natural habitats suggests that these anurans may differ in adaptive abilities. I used a half-sib design to partition phenotypic and quantitative genetic variation in tadpole responses at two food levels into causal variance components. Rana lessonae displays strong phenotypic variation across food levels. Growth rate is strictly determined by environmental factors and includes weak maternal effects. Larval period and body size at metamorphosis both contain moderate levels of additive genetic variance. The sire x food interactions and the lack of environmental correlations indicate that adaptive phenotypic plasticity is present in both of these traits. In contrast, R. esculenta displays less phenotypic variation across food levels, especially for larval period. Variation in body size at metamorphosis is underlain by genetic variation as shown by high levels of additive genetic variance, yet growth rate and larval period are not. Significant environmental correlations between larval period at high food level and growth, larval period, and body size at low food, indicate phenotypic plasticity is absent. A positive phenotypic correlation between body size at metamorphosis and larval period for R. lessonae at both food levels suggests a trade-off between growing large and metamorphosing quickly to escape predation or pond drying. The lack of a similar correlation for R. esculenta at the high food level suggests it may be less constrained. Different levels of adaptive genetic variation among larval traits suggest that the sexual species and the hybridogenetic hemiclone differ in their abilities to cope with temporally and spatially heterogeneous environments.  相似文献   

3.
The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac physiopathological injury.  相似文献   

4.
Objective: To investigate the joint role of the 48‐base pair repeat polymorphism of the dopamine receptor 4 gene (DRD4) and environmental factors in body mass variation among an ethnically diverse sample of U.S. adolescents and young adults. Research Methods and Procedures: Approximately 2600 adolescent and young adults in the National Longitudinal Study of Adolescent Health (Add Health) who provided DNA measures and measures of height and weight were included in the analysis. Mixed regression modeling was used to investigate the effects of the 7R/7R and any5R variants in the DRD4 gene simultaneously with the effects of physical activity (PA), sedentary behavior (SB), and family socioeconomic status (SES) on body mass variation. European Americans, African Americans, and Hispanic Americans were modeled separately. Results and Discussion: Both the 7R/7R and any5R genotypes of the DRD4 gene were associated with age‐ and sex‐specific BMI percentile score (BMI‐P) based on the Centers for Disease Control and Prevention/National Center for Health Statistics 2000 reference curves among African Americans and only among African Americans (N = 413) 20 years old or younger. Neither genetic variants are associated with the BMI measure among white (N = 1386) and Hispanic‐American (N = 331) adolescents. The presence of the 7R/7R genotype was associated with a reduction of 15.1 in BMI percentile (p = 0.005), and the presence of any5R was associated with an increase of 15.5 in BMI percentile (p = 0.003), after adjusting for PA, SB, and family SES. Neither PA nor SB as measured in Add Health is importantly associated with BMI‐P, suggesting a complex relationship between body mass and PA/SB among adolescents and young adults. Family SES is negatively related to BMI‐P in the European‐American sample.  相似文献   

5.
(R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7 , a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (?)-(S)- 7 were prepared to investigate the stereoselectivity of (R,S)- 7 . Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (?)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (?)-(S)- 7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)- 7 isomer displayed 100-fold higher affinity than the (?)-(S)- 7 isomer. Biochemical study indicated that (+)-(R)- 7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (?)-(S)- 7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (?)-(S)-[125I] 7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I] 7 , displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (?)-(S)- 7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd > 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)- 7 , an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

6.
 Three mutations determining self-fertility at the S, Z and S5 self-incompatibility loci on chromosomes 1R, 2R and 5R of rye, respectively, were mapped using three different F2 populations. There was a close linkage of one isozyme and four RFLP markers, and no recombinant plants were detected. These markers are Prx7, Xiag249 and Xpsr634 for the S locus (1R), Xbcd266 for the Z locus (2R) and Xpsr100 for the S5 locus (5R). Linkage data for markers associated to the self-fertility mutations at the S, Z and S5 loci were calculated and compared with genetic maps computed by MAPMAKER multipoint analysis. Received: 8 October 1997 / Acepted: 26 November 1997  相似文献   

7.
Objective: Soluble leptin receptor (sOB‐R) represents the main binding site for leptin in human blood. The aim of this study was to investigate the relationship between leptin and soluble leptin receptor and the bound/free ratio after pronounced weight reduction. Research Methods and Procedures: A total of 18 morbidly obese women participated in this prospective study. Subjects were examined for fat mass, leptin, and sOB‐R concentrations before and 1 year after Swedish adjustable gastric banding. Results: Anthropomorphic measures displayed a significant reduction of body mass index [(42.9 ± 5.6 to 32.9 ± 6.0 kg/m2 (mean ± SD)]. Fat mass decreased from 56.3 ± 9.0 to 33.9 ± 12.5 kg. Plasma leptin concentration decreased from 44.6 ± 18.0 to 20.0 ± 13.1 ng/mL (p < 0.001), whereas the sOB‐R levels increased from 11.1 ± 3.6 to 16.6 ± 6.0 U/mL after weight‐reducing surgery. Thus, the sOB‐R bound fraction of leptin increased from 7% to 33%. Discussion: This work demonstrates a relationship between weight loss, leptin, and sOB‐R concentrations in vivo. During weight loss, leptin levels decreased, whereas sOB‐R levels and the receptor bound fraction of leptin increased. Thus, sOB‐R may negatively regulate free leptin.  相似文献   

8.
Rhizobium meliloti adapts to environments of high osmolarity by accumulating glutamate, trehalose, and the dipeptide N-acetylglutaminylglutamine amide (NAGGN) intracellularly. In this study, the mechanism of NAGGN production and accumulation was examined. NAGGN was produced in osmotically shocked cultures after a lag period of more than one hour, and NAGGN was undetectable in cultures treated with chloramphenicol, indicating that genetic induction is required for NAGGN accumulation.In vitro radiolabeling experiments demonstrated that the peptide synthesis step in NAGGN production did not occur ribosomally. Rather, it was catalyzed by an ATP-dependent enzyme that appeared to be both induced by high osmolarity and activated by K+. Also, a mutant analysis suggested that NAGGN may be partly responsible for the osmotic tolerance observed inR. meliloti. 36% of mutants that were characterized as osmotically sensitive compared to the parent strain, were also found to contain reduced levels of NAGGN. The phenomenon of osmolyte accumulation as it relates to adaptation to other environmental stresses is discussed.  相似文献   

9.
 A genetic model is proposed for the analysis of embryo and endosperm effects as well as GE interaction effects. An investigation of three malting quality traits in grains of seven parents and their F2s was undertaken in a half-diallel cross of barley (Hordeum distichum L.) over 2 years. The results indicated that the malt Kolbach index (KI), alpha-amylase activity (αAA) and wort soluble nitrogen (Wort-N) are controlled by both embryo genetic effects and endosperm genetic effects. Variance of the endosperm additive effects was obviously larger than that of the embryo additive effects. In the contribution of the embryo genetic effects to variation in malt αAA and Wort-N, the dominance effects were considerably larger than the additive effects. The endosperm dominance effects constituted a major part of the total genetic effect on the KI. Significant endosperm GE interactions were also detected in the malt traits concerned. Endosperm general heritability (h 2 e ) tended to be larger than interaction heritability (h 2 oE or h 2 eE ) for all the traits. Endosperm heterosis was observed to be significantly positive for αAA but negative for Wort-N in the F2 seed generation. Prediction of main gene effects for seven parents showed that ‘Ganmu 2’ and ‘Supi1’ were suitable parental varieties for malt αAA and Wort-N improvement. Our genetic model for malting quality traits and its application in breeding are discussed. Received: 5 August 1997 / Accepted: 11 September 1997  相似文献   

10.
Dominant black coat color in sheep is predicted to be caused by an allele E D at the extension locus. Recent studies have shown that this gene encodes the melanocyte stimulating hormone receptor (MC1-R). In mouse and fox, naturally occurring mutations in the coding region of MC1-R produce a constitutively activated receptor that switches the synthesis from phaeomelanin to eumelanin within the melanocyte, explaining the black coat color observed phenotypically. In the sheep, we have identified a Met→Lys mutation in position 73 (M73K) together with a Asp → Asn change at position 121 (D121N) showing complete cosegregation with dominant black coat color in a family lineage. Only the M73K mutation showed constitutive activation when introduced into the corresponding mouse receptor (mMC1-R) for pharmacological analysis; however, the position corresponding to D121 in the mouse receptor is required for high affinity ligand binding. The pharmacological profile of the M73K change is unique compared to the constitutively active E92K mutation in the sombre mouse and C123R mutation in the Alaska silver fox, indicating that the M73K change activates the receptor via a mechanism distinct from these previously characterized mutations. Received: 18 September 1997 / Accepted: 14 October 1998  相似文献   

11.
S Bourgeois  R F Newby 《Cell》1977,11(2):423-430
A glucocorticoid-sensitive mouse thymoma line, W7, is compared to the mouse lymphoma line S49 which has been extensively used in studies of steroid action. Glucocorticoid-resistant variants are known to arise spontaneously at high rate from S49 (3.5 × 10?6 per cell per generation) and at a frequency orders of magnitude lower in the case of W7 (<3 × 10?9). The receptors of both cell lines have the same affinity for dexamethasone (Kd = 1.3 ± 0.3 × 10?8 M), but W7 cells contain twice the amount of glucocorticoid receptors present in S49 and are measurably more sensitive than S49 cells to dexamethasone. By selection for resistance to low concentrations of dexamethasone, derivatives of W7 have been isolated which are similar to S49 in that they have a higher resistance than the parental W7 line and approximately half the receptor content. Moreover, like S49, the partially resistant variants of W7 give rise to fully resistant derivatives at a high rate (2 × 10?6 per cell per generation). These results suggest that a structural gene (r) coding for the receptor is present in two functional copies in W7 (r?,+), but in only one functional copy (r+/?) in partially resistant derivatives of W7 and in S49. The gene dosage effect observed in these pseudodiploid lines indicates that the receptor gene, r, is autosomal, and that the inactivation of the r gene is a recessive genetic event. Consequences of the homozygous and heterozygous states of the receptor locus are discussed.  相似文献   

12.
KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.  相似文献   

13.
Thirty mutants sensitive to tetracycline were obtained from an R100 factor capable of conferring resistance to tetracycline (TC), chloramphenicol (CM), streptomycin (SM) and sulfanilamide (SA). Among the TC sensitive mutants, three showed a high frequency of spontaneous loss from host strains. The genetic loci governing the stability of R factor in host bacteria were denoted as stb. The stb R factors have lost many of the properties of a wild type R factor, such as, the capability to sexually transfer drug resistance and host chromosome, to confer superinfection immunity and to inhibit F function. All of these properties did not revert to a wild type phenotype, suggesting that these mutations are deletions including genetic determinants governing both TC resistance and stability of R factor. Recombinational analysis between stb and stb+ R factors indicated that crossovers between the stb loci and those governing CM (or SM.SA) resistance took place at high frequency. No crossovers were detected between stb loci and those governing TC resistance, indicating that the stb loci are linked closely to the loci governing TC resistance.  相似文献   

14.
Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation.  相似文献   

15.
 Variation at seven microsatellite loci was investigated in three local E. alaskanus populations from Norway and microsatellite variation was compared with allozyme variation. The percentage of polymorphic loci was 81%, the mean number of alleles per polymorphic locus was 5.7 and expected heterozygosity was 0.37. An F-statistic analysis revealed an overall 48% deficit of heterozygotes over Hardy-Weinberg expectations. Gene diversity is mainly explained by the within population component. The averaged between population differentiation coefficient, F st , over 7 loci is only 0.13, which accounts for only 13% of the whole diversity and was contrary to allozyme analysis. The mean genetic distance between populations was 0.12. However, a χ2 -test showed that allele frequencies were different (p < 0.05) among the populations at 5 of the 7 loci. In comparison with the genetic variation detected by allozymes, microsatellite loci showed higher levels of genetic variation. Microsatellite analysis revealed that population H10576 possesses the lowest genetic variation among the tested three populations, which concur with allozyme analysis. The dendrogram generated by microsatellites agreed very well with allozymic data. Our results suggest that natural selection may be an important factor in shaping the genetic diversity in these three local E. alaskanus populations. Possible explanations for deficit heterozygosity and incongruence between microsatellites and allozymes are discussed. Received November 6, 2001; accepted April 24, 2002 Published online: November 14, 2002 Addresses of the authors: Genlou Sun (e-mail: Genlou.sun@STMARYS.CA), Biology Department, Saint Mary's University, Halifax. Nova Scotia, B3H 3C3, Canada. B. Salomon, R. von Bothmer, Department of Crop Science, The Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53, Alnarp, Sweden.  相似文献   

16.
17.
A high renal oxygen (O2) need is primarily associated with the renal tubular O2 consumption (VO2) necessary for a high rate of sodium (Na+) transport. Limited O2 availability leads to increased levels of adenosine, which regulates the kidney via activation of both A1 and A2A adenosine receptors (A1R and A2AR, respectively). The relative contributions of A1R and A2AR to the regulation of renal Na+ transport and VO2 have not been determined. We demonstrated that A1R activation has a dose-dependent biphasic effect on both renal Na+/H+ exchanger-3 (NHE3), a major player in Na+ transport, and VO2. Here, we report concentration-dependent effects of adenosine: less than 5 × 10−7 M adenosine-stimulated NHE3 activity; between 5 × 10−7 M and 10−5 M adenosine-inhibited NHE3 activity; and greater than 10−5 M adenosine reversed the change in NHE3 activity (returned to baseline). A1R activation mediated the activation and inhibition of NHE3 activity, whereas 10−4 M adenosine had no effect on the NHE3 activity due to A2AR activation. The following occurred when A1R and A2AR were activated: (a) Blockade of the A2AR receptor restored the NHE3 inhibition mediated by A1R activation, (b) the NHE-dependent effect on VO2 mediated by A1R activation became NHE independent, and (c) A2AR bound to A1R. In summary, A1R affects VO2 via NHE-dependent mechanisms, whereas A2AR acts via NHE-independent mechanisms. When both A1R and A2AR are activated, the A2AR effect on NHE3 and VO2 predominates, possibly via an A1R–A2AR protein interaction. A2AR–A1R heterodimerization is proposed as the molecular mechanism enabling the NHE-independent control of renal VO2.  相似文献   

18.
S. K. Rice 《Oecologia》2000,123(1):1-8
Field samples of bryophytes are highly variable in carbon isotope discrimination values (Δ, a measure of 13CO2 uptake relative to 12CO2), but it is unknown what affects Δ under field conditions, or how variation in Δ relates to bryophyte performance. This study employed field and greenhouse common garden studies to evaluate the influence of microsite, seasonal, and genetic variation on Δ in peatmosses. Three species of Sphagnum that occupy hollow (S. recurvum), carpet (S. palustre), and hummock (S. tenerum) habitats were sampled for relative growth rates (RGR), C:N ratio, and Δ throughout a growing season. Values of Δ ranged from 19.0 to 27.1‰. This variation was unrelated to species (P=0.61). However, Δ varied seasonally (P<0.001), with lower discrimination in the spring (mean 22.5‰), followed by summer (23.8‰) and winter (24.7‰). There was also significant microsite variation (P=0.015) which disappeared when plants were grown in a common garden. In both spring and summer, microsite variation in Δ was inversely related to RGR (P<0.001), but unrelated to C:N ratios (P>0.08). These results suggest that environmental, not genetic, variation at microsites affects Δ in non-vascular plants. However, environmental control of Δ is unlike that in vascular plants where water limitation lowers chloroplastic demand and increases resistance to carbon uptake. In non-vascular plants, water limitation lowers chloroplastic demand and decreases resistance to carbon uptake. These processes have additive effects and generate high spatial and seasonal variability in Δ. Received: 29 April 1999 / Accepted: 8 November 1999  相似文献   

19.
Genetic diversity of French common wheat germplasm based on gliadin alleles   总被引:24,自引:0,他引:24  
 Analysis of gliadin electrophoretic (APAGE) patterns made it possible to identify 79 alleles at six Gli-1 and Gli-2 loci (from 9 to 18 per locus) and 173 gliadin genotypes in the 187 French common wheat cultivars considered. Six new alleles were registered in the catalogue of gliadin alleles. The genetic diversity of French common wheats was found to be high (H=0.714) and had not changed much during the last 25–50 years. Analysis of genetic distances showed some gradual changes in French wheat germplasm over the course of time. Genetic distances between French and several European wheat germplasm were analysed; genotypes of European wheats were found to relate very distantly to Canadian genotypes. The considerable differentiation of wheat genotypes from different countries and cereal companies might be caused by breeders’ personal preferences and by hidden natural selection specific to each local environment. In French cultivars, genetic variation in earliness, and in the North/South habit of the cultivars studied, correlated significantly with allelic variation at Gli-B1, Gli-A2 and Gli-D2 for earliness, and at Gli-D2 for the North/ South habit. Early and late cultivars are grown mainly in Southern and Northern France, respectively (r 2=0.30). Cultivars having either the 1B/1R translocation or allele Gli-D2g are, on average, later and more resistant to cold; they hence are grown in the North of France. Alternatively, cultivars with the allele Gli-D2m are earlier and cold-sensitive, and are grown in the South of France. Received: 5 February 1997 / Accepted: 19 September 1997  相似文献   

20.
Drosophila melanogaster is widely used to study genetic factors causing Parkinson's disease (PD) largely because of the use of sophisticated genetic approaches and the presence of a high conservation of gene sequence/function between Drosophila and mammals. However, in Drosophila, little has been done to study the environmental factors which cause over 90% of PD cases. We used Drosophila primary neuronal culture to study degenerative effects of a well‐known PD toxin MPP+. Dopaminergic (DA) neurons were selectively degenerated by MPP+, whereas cholinergic and GABAergic neurons were not affected. This DA neuronal loss was because of post‐mitotic degeneration, not by inhibition of DA neuronal differentiation. We also found that MPP+‐mediated neurodegeneration was rescued by D2 agonists quinpirole and bromocriptine. This rescue was through activation of Drosophila D2 receptor DD2R, as D2 agonists failed to rescue MPP+‐toxicity in neuronal cultures prepared from both a DD2R deficiency line and a transgenic line pan‐neuronally expressing DD2R RNAi. Furthermore, DD2R autoreceptors in DA neurons played a critical role in the rescue. When DD2R RNAi was expressed only in DA neurons, MPP+ toxicity was not rescued by D2 agonists. Our study also showed that rescue of DA neurodegeneration by Drosophila DD2R activation was mediated through suppression of action potentials in DA neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号