首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

2.
Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in vesicles coated with coat protein complex II (COPII). The incorporation of certain transport molecules (cargo) into the COPII vesicles is thought to be mediated by cargo receptors. Here we show that Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Exit of Emp46p from the ER was saturable and dependent on the expression level of Emp47p. Emp46p binding to Emp47p occurs in the ER through the coiled-coil region in the luminal domains of both Emp47p and Emp46p, and dissociation occurs in the Golgi. Further, this coiled-coil region is also required for Emp47p to form an oligomeric complex of itself in the ER, which is essential for exit of Emp47p from the ER. Our results suggest that Emp47p is a receptor protein for Emp46p that allows for the selective transport of this protein, and this event involves receptor oligomerization.  相似文献   

3.
COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.  相似文献   

4.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

5.
Sato K  Nakano A 《FEBS letters》2007,581(11):2076-2082
The evolutionarily conserved coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). COPII coat is responsible for direct capture of cargo proteins and for the physical deformation of the ER membrane that drives the COPII vesicle formation. In addition to coat proteins, recent data have indicated that the Ras-like small GTPase Sar1 plays multiple roles, such as COPII coat recruitment, cargo sorting, and completion of the final fission. In the present review, we summarize current knowledge of COPII-mediated vesicle formation from the ER, as well as highlighting non-canonical roles of COPII components.  相似文献   

6.
Mutant forms of presenilin (PS) 1 and 2 and amyloid precursor protein (APP) lead to familial Alzheimer's disease. Several reports indicate that PS may modulate APP export from the endoplasmic reticulum (ER). To develop a test of this possibility, we reconstituted the capture of APP and PS1 in COPII (coat protein complex II) vesicles formed from ER membranes in permeabilized cultured cells. The recombinant forms of mammalian COPII proteins were active in a reaction that measures coat subunit assembly and coated vesicle budding on chemically defined synthetic liposomes. However, the recombinant COPII proteins were not active in cargo capture and vesicle budding from microsomal membranes. In contrast, rat liver cytosol was active in stimulating the sorting and packaging of APP, PS1, and p58 (an itinerant ER to Golgi marker protein) into transport vesicles from donor ER membranes. Budding was stimulated in dilute cytosol by the addition of recombinant COPII proteins. Fractionation of the cytosol suggested one or more additional proteins other than the COPII subunits may be essential for cargo selection or vesicle formation from the mammalian ER membrane. The recombinant Sec24C specifically recognized the APP C-terminal region for packaging. Titration of Sarla distinguished the packaging requirements of APP and PS1. Furthermore, APP packaging was not affected by deletion of PS1 or PS1 and 2, suggesting APP and PS1 trafficking from the ER are normally uncoupled.  相似文献   

7.
Emp46p and Emp47p are type I membrane proteins, which cycle between the endoplasmic reticulum (ER) and the Golgi apparatus by vesicles coated with coat protein complexes I and II (COPI and COPII). They are considered to function as cargo receptors for exporting N-linked glycoproteins from the ER. We have determined crystal structures of the carbohydrate recognition domains (CRDs) of Emp46p and Emp47p of Saccharomyces cerevisiae, in the absence and presence of metal ions. Both proteins fold as a beta-sandwich, and resemble that of the mammalian ortholog, p58/ERGIC-53. However, the nature of metal binding is distinct from that of Ca(2+)-dependent p58/ERGIC-53. Interestingly, the CRD of Emp46p does not bind Ca(2+) ion but instead binds K(+) ion at the edge of a concave beta-sheet whose position is distinct from the corresponding site of the Ca(2+) ion in p58/ERGIC-53. Binding of K(+) ion to Emp46p appears essential for transport of a subset of glycoproteins because the Y131F mutant of Emp46p, which cannot bind K(+) ion fails to rescue the transport in disruptants of EMP46 and EMP47 genes. In contrast the CRD of Emp47p binds no metal ions at all. Furthermore, the CRD of Emp46p binds to glycoproteins carrying high mannosetype glycans and the is promoted by binding not the addition of Ca(2+) or K(+) ion in These results suggest that Emp46p can be regarded as a Ca(2+)-independent intracellular lectin at the ER exit sites.  相似文献   

8.
The coat protein complex II (COPII) generates transport vesicles that mediate protein export from the endoplasmic reticulum (ER). The first step of COPII vesicle formation involves conversion of Sar1p-GDP to Sar1p-GTP by guanine-nucleotide-exchange factor (GEF) Sec12p. In Saccharomyces cerevisiae, Sed4p is a structural homolog of Sec12p, but no GEF activity toward Sar1p has been found. Although the role of Sed4p in COPII vesicle formation is implied by the genetic interaction with SAR1, the molecular basis by which Sed4p contributes to this process is unclear. This study showed that the cytoplasmic domain of Sed4p preferentially binds the nucleotide-free form of Sar1p and that Sed4p binding stimulates both the intrinsic and Sec23p GTPase-activating protein (GAP)-accelerated GTPase activity of Sar1p. This stimulation of Sec23p GAP activity by Sed4p leads to accelerated dissociation of coat proteins from membranes. However, Sed4p binding to Sar1p occurs only when cargo is not associated with Sar1p. On the basis of these findings, Sed4p appears to accelerate the dissociation of the Sec23/24p coat from the membrane, but the effect is limited to Sar1p molecules that do not capture cargo protein. We speculate that this restricted coat disassembly may contribute to the concentration of specific cargo molecules into the COPII vesicles.  相似文献   

9.
Cargo is selectively exported from the ER in COPII vesicles. To analyze the role of COPII in selective transport from the ER, we have purified components of the mammalian COPII complex from rat liver cytosol and then analyzed their role in cargo selection and ER export. The purified mammalian Sec23–24 complex is composed of an 85-kD (Sec23) protein and a 120-kD (Sec24) protein. Although the Sec23–24 complex or the monomeric Sec23 subunit were found to be the minimal cytosolic components recruited to membranes after the activation of Sar1, the addition of the mammalian Sec13–31 complex is required to complete budding. To define possible protein interactions between cargo and coat components, we recruited either glutathione-S-transferase (GST)–tagged Sar1 or GST– Sec23 to ER microsomes. Subsequently, we solubilized and reisolated the tagged subunits using glutathione-Sepharose beads to probe for interactions with cargo. We find that activated Sar1 in combination with either Sec23 or the Sec23–24 complex is necessary and sufficient to recover with high efficiency the type 1 transmembrane cargo protein vesicular stomatitis virus glycoprotein in a detergent-soluble prebudding protein complex that excludes ER resident proteins. Supplementing these minimal cargo recruitment conditions with the mammalian Sec13–31 complex leads to export of the selected cargo into COPII vesicles. The ability of cargo to interact with a partial COPII coat demonstrates that these proteins initiate cargo sorting on the ER membrane before budding and establishes the role of GTPase-dependent coat recruitment in cargo selection.  相似文献   

10.
The mechanisms by which the coat complex II (COPII) coat mediates membrane deformation and vesicle fission are unknown. Sar1 is a structural component of the membrane-binding inner layer of COPII (Bi, X., R.A. Corpina, and J. Goldberg. 2002. Nature. 419:271-277). Using model liposomes we found that Sar1 uses GTP-regulated exposure of its NH2-terminal tail, an amphipathic peptide domain, to bind, deform, constrict, and destabilize membranes. Although Sar1 activation leads to constriction of endoplasmic reticulum (ER) membranes, progression to effective vesicle fission requires a functional Sar1 NH2 terminus and guanosine triphosphate (GTP) hydrolysis. Inhibition of Sar1 GTP hydrolysis, which stabilizes Sar1 membrane binding, resulted in the formation of coated COPII vesicles that fail to detach from the ER. Thus Sar1-mediated GTP binding and hydrolysis regulates the NH2-terminal tail to perturb membrane packing, promote membrane deformation, and control vesicle fission.  相似文献   

11.
Active sorting at the endoplasmic reticulum (ER) drives efficient export of fully folded secretory proteins into coat protein complex II (COPII) vesicles, whereas ER-resident and misfolded proteins are retained and/or degraded. A number of secretory proteins depend upon polytopic cargo receptors for linkage to the COPII coat and ER export. However, the mechanism by which cargo receptors recognize transport-competent cargo is poorly understood. Here we examine the sorting determinants required for export of yeast alkaline phosphatase (ALP) by its cargo receptor Erv26p. Analyses of ALP chimeras and mutants indicated that Erv26p recognizes sorting information in the lumenal domain of ALP. This lumenal domain sorting signal must be positioned near the inner leaflet of the ER membrane for Erv26p-dependent export. Moreover, only assembled ALP dimers were efficiently recognized by Erv26p while an ALP mutant blocked in dimer assembly failed to exit the ER and was subjected to ER-associated degradation. These results further refine sorting information for ER export of ALP and show that recognition of folded cargo by export receptors contributes to strict ER quality control.  相似文献   

12.
The COPII coat complex mediates the formation of transport carriers at specialized sites of the endoplasmic reticulum (ERES). It consists of the Sar1p GTPase and the Sec23/24p and the Sec13/31p subcomplexes . Both stimulate the GTPase activity of Sar1p , which itself triggers coat disassembly. This built-in GAP activity makes the COPII complex in principle unstable and raises the question of how sufficient stability required for cargo capture and carrier formation is achieved. To address this, we analyzed COPII turnover at single ERES in living cells. The half times for Sar1p, Sec23p, and Sec24p turnover are 1.1, 3.7, and 3.9 s, respectively. Decreasing the amount of transport-competent cargo in the endoplasmic reticulum accelerates turnover of the Sec23/24p and slows down that of Sar1p. A mathematical model of COPII membrane turnover that reproduces the experimental in vivo FRAP kinetics and is consistent with existing in vitro data predicts that Sec23/24p remains membrane associated even after GTP hydrolysis by Sar1p for a duration that is strongly increased by the presence of cargo. We conclude that secretory cargo retains the COPII complex on membranes, after Sar1p release has occurred, and prevents premature disassembly of COPII during cargo sorting and transport carrier formation.  相似文献   

13.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

14.
In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the permeases from the ER to the Golgi in vitro. Addition of soluble COPII components (Sec23/24p, Sec13/31p, and Sar1p) to yeast membrane preparations generated vesicles containing the general amino acid permease. Gap1p, and the histidine permease, Hip1p. Shr3p was required for the packaging of Gap1p and Hip1p but was not itself incorporated into transport vesicles. In contrast, the packaging of the plasma membrane ATPase, Pma1p, and the soluble yeast pheromone precursor, glycosylated pro alpha factor, was independent of Shr3p. In addition, we show that integral membrane and soluble cargo colocalize in transport vesicles, indicating that different types of cargo are not segregated at an early step in secretion. Our data suggest that specific ancillary proteins in the ER membrane recruit subsets of integral membrane protein cargo into COPII transport vesicles.  相似文献   

15.
The generation of COPII vesicles from synthetic liposome membranes requires the minimum coat components Sar1p, Sec23/24p, Sec13/31p, and a nonhydrolyzable GTP analog such as GMP-PNP. However, in the presence of GTP and the full complement of coat subunits, nucleotide hydrolysis by Sar1p renders the coat insufficiently stable to sustain vesicle budding. In order to recapitulate a more authentic, GTP-dependent budding event, we introduced the Sar1p nucleotide exchange catalyst, Sec12p, and evaluated the dynamics of coat assembly and disassembly by light scattering and tryptophan fluorescence measurements. The catalytic, cytoplasmic domain of Sec12p (Sec12DeltaCp) activated Sar1p with a turnover 10-fold higher than the GAP activity of Sec23p stimulated by the full coat. COPII assembly was stabilized on liposomes incubated with Sec12DeltaCp and GTP. Numerous COPII budding profiles were visualized on membranes, whereas a parallel reaction conducted in the absence of Sec12DeltaCp produced no such profiles. We suggest that Sec12p participates actively in the growth of COPII vesicles by charging new Sar1p-GTP molecules that insert at the boundary between a bud and the surrounding endoplasmic reticulum membrane.  相似文献   

16.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

17.
Efficient export of secretory alkaline phosphatase (ALP) from the endoplasmic reticulum depends on the conserved transmembrane sorting adaptor Erv26p/Svp26p. In the present study we investigated the mechanism by which Erv26p couples pro-ALP to the coat protein complex II (COPII) export machinery. Site-specific mutations were introduced into Erv26p, and mutant proteins were assessed in cell-free assays that monitor interactions with pro-ALP cargo and packaging into COPII vesicles. Mutations in the second and third loop domains of Erv26p inhibited interaction with pro-ALP, whereas mutations in the C-terminal tail sequence influenced incorporation into COPII vesicles and subcellular distribution. Interestingly mutations in the second loop domain also influenced Erv26p homodimer associations. Finally we demonstrated that Ktr3p, a cis-Golgi-localized mannosyltransferase, also relies on Erv26p for efficient COPII-dependent export from the endoplasmic reticulum. These findings demonstrate that Erv26p acts as a protein sorting adaptor for a variety of Type II transmembrane cargo proteins and requires domain-specific interactions with both cargo and coat subunits to promote efficient secretory protein transport.Anterograde transport in the eukaryotic secretory pathway is initiated by the formation of COPII2-coated vesicles that emerge from transitional ER sites. The COPII coat, which consists of the small GTPase Sar1p, Sec23/24 complex, and Sec13/31 complex, selects vesicle cargo through recognition of export signals and forms ER-derived vesicles through assembly of an outer layer cage structure (1, 2). Cytoplasmically exposed ER export signals have been identified in secretory cargo including the C-terminal dihydrophic and diacidic motifs (3, 4). Structural studies indicate that the Sec24p subunit of the COPII coat contains distinct binding sites for some of the molecularly defined export signals (5, 6). Thus a cycle of cargo-coat interactions regulated by the Sar1p GTPase directs anterograde movement of secretory proteins into ER-derived transport vesicles (7).Although many secretory proteins contain known export signals that interact directly with COPII subunits, the diverse array of secretory cargo that depends on this export route requires additional machinery for efficient collection of all cargo into COPII vesicles (1). For instance certain soluble secretory proteins as well as transmembrane cargo require protein sorting adaptors for efficient ER export. These membrane-spanning adaptors, or sorting receptors, interact directly with secretory cargo and with coat subunits to efficiently couple cargo to the COPII budding machinery. For example, ERGIC-53 acts as a protein sorting adaptor for several glycoproteins and has a large N-terminal lumenal domain that interacts with secretory proteins including blood coagulation factors, cathepsins, and α1-antitrypsin (810). The cytoplasmic C-terminal tail of ERGIC-53 contains a diphenylalanine export signal that is necessary for COPII export as well as a dilysine motif required for COPI-dependent retrieval to the ER (11). Additional ER vesicle proteins identified in yeast have been shown to interact with the COPII coat as well as specific secretory proteins (12). For example Erv29p acts as a protein sorting adaptor for the soluble secretory proteins glyco-pro-α-factor and carboxypeptidase Y (13). Erv29p also contains COPII and COPI sorting signals that shuttle the protein between ER and Golgi compartments. More recently Erv26p was identified as a cargo receptor that escorts the pro-form of secretory alkaline phosphatase (ALP) into COPII-coated vesicles (14).Although COPII sorting receptors have been identified, the molecular mechanisms by which these receptors link cargo to coat remain poorly understood. Moreover it is not clear how cargo binding is regulated to promote interaction in the ER and then trigger dissociation in the Golgi complex. We have shown previously that Erv26p binds to pro-ALP and is required for efficient export of this secretory protein from the ER (14). Therefore specific lumenal regions of Erv26p are proposed to interact with pro-ALP, whereas cytosolically exposed sorting signals are presumably recognized and bound by coat subunits. To gain insight on the molecular contacts required for Erv26p sorting function, we undertook a systematic mutational analysis of this multispanning membrane protein. After generating a series of Erv26p mutants, we observed that mutation of specific residues in the third loop domain affect pro-ALP interaction and that residues in the C-terminal cytosolic tail are required for COPII and COPI transport. Finally mutation of residues in the second loop domain influenced Erv26p homodimer formation and sorting activity.  相似文献   

18.
Export of transmembrane proteins from the endoplasmic reticulum (ER) is driven by directed incorporation into coat protein complex II (COPII)‐coated vesicles. The sorting of some cargo proteins into COPII vesicles was shown to be mediated by specific interactions between transmembrane and COPII‐coat‐forming proteins. But even though some signals for ER exit have been identified on the cytosolic domains of membrane proteins, the general signaling and sorting mechanisms of ER export are still poorly understood. To investigate the role of cargo protein oligomer formation in the export process, we have created a transmembrane fusion protein that – owing to its FK506‐binding protein domains – can be oligomerized in isolated membranes by addition of a small‐molecule dimerizer. Packaging of the fusion protein into COPII vesicles is strongly enhanced in the presence of the dimerizer, demonstrating that the oligomeric state is an ER export signal for this membrane protein. Surprisingly, the cytosolic tail is not required for this oligomerization‐dependent effect on protein sorting. Thus, an alternative mechanism, such as membrane bending, must account for ER export of the fusion protein.   相似文献   

19.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.  相似文献   

20.
Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at exit sites driven by increased levels of Golgi proteins in the ER. Analysis in a permeabilized cell assay indicated that up-regulation of COPII assembly occurred in the absence GTP hydrolysis and any cytosolic factors other than the COPII prebudding complex Sar1p-Sec23p-Sec24p. Remarkably, acting via a direct interaction with Sar1p, increased expression of the Golgi enzyme N-acetylgalactosaminyl transferase-2 induced increased COPII assembly on the ER and an overall increase in the size of the Golgi apparatus. These results suggest that direct interactions between Golgi proteins exiting the ER and COPII components regulate ER exit, providing a variable exit rate mechanism that ensures homeostasis of the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号