首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Summary The construction and characterization of glyceraldehyde-3-phosphate-dehydrogenase (GPD) overproducing transformants of Aspergillus nidulans and their behaviour in acetate-limited continuous cultures and glucose-grown batch cultures are described. The A. nidulans acetamidase deletion strain MH1277 was transormed with the homologous gpdA gene on a vector with the homologous acetamidase-gene (amdS) as a selection marker. Transformant Al contains about nine integrated copies of the gpdA gene, and shows a proportional gene-dosage GPD production of about 22% of the total soluble cell protein. Compared to the wild-type MH1277, Al has higher growth yields and reaches higher specific growth rates on both acetate and glucose, which could be due to the key position of GPD in glycolysis and gluconeogenesis.Offprint requests to: P. P. F. Hanegraaf  相似文献   

2.
Growth of cultures ofLactobacillus casei ATCC 7469 without pH control under aerobic conditions resulted in very low maximum specific growth rates (0.19 hr−1), exponential glucose utilization rates (0.10 log units/hr/ml of culture) and exponential lactate production rates (0.17 log units/hr/ml of culture), compared to anaerobic cultures. In anaerobic cultures glucose was converted stoichiometrically to lactate but in aerobic cultures this was never observed. It was found that aeration affects both the rate at which glucose is converted to lactate and the stoichiometry of this conversion. The investigation of a number of glucose-metabolizing enzymes suggests that an oxidative pathway for glucose breakdown becomes operative under aerated conditions. This work has been carried out with the financial help from the Commonwealth Postgraduate Award Scheme, University Research Grant and the Australian Research Grant Commission.  相似文献   

3.
The production of tylosin and related compounds by Streptomyces fradiae NRRL 2702 was studied in batch and chemostat cultures using a soluble synthetic medium. In batch culture, a trophophase–idiophase kinetic pattern was observed with tylosin, macrocin, and relomycin accumulating in the idiophase. When the organism was grown in chemostat culture, the specific rate of production of tylosin and related compounds (qtylosin) was found to be a function of the growth rate. The maximum value of (qtylosin) was observed when D = 0.017 hr?1. At this growth rate only tylosin and relomycin accumulated in the medium. By varying the concentration of glucose in the ingoing medium it was possible to study the effects of glucose on tylosin synthesis in chemostat cultures. At a growth rate of 0.017 hr?1, the maximum value of qtylosin was 0.71 mg tylosin/g dry weight (DW)/hr when the glucose uptake rate was 7 mg glucose/g DW-hr. This value of qtylosin was 40% greater than the maximum qtylosin observed in batch culture. When glycerol was substituted for glucose in the medium, it was possible in chemostat culutures to get values of qtylosin approximately 20% greater than those obtained with glucose at the same uptake rate. By varying the concentration of sodium glutamate in the ingoing medium it was possible to show that increasing the specific uptake rate of sodium glutamate increased the values of qtylosin obtained. Similar chemostat experiments where the inorganic phosphate concentration in the ingoing medium was varied showed that increased the uptake of phosphate decreased the values of qtylosin obtained. Also increasing the uptake rate of phosphate increased the relomycin-to-tylosin ratio. By taking into consideration the suppressing effects of glucose and the stimulating effects of sodium glutamate on tylosin synthesis, it was possible to formulate a medium that resulted in a value of qtylosin of 1.1 mg/g/hr being obtained at a growth rate of 0.03 hr?1. Batch fermentations with this medium did not follow a trophophase–idiophase kinetic pattern, but instead tylosin was actively synthesized during a period of rapid mycelial growth.  相似文献   

4.
A gram-negative bacterium strongly lytic toward living cells of the food yeast Saccharomyces fragilis was isolated by continuous-flow enrichment from compost. The organism was identified as a species of Arthrobacter. The extracellular lytic enzyme complex produced by this bacterium contained β-1,3-glucanase, mannan mannohydrolase, and proteolytic activities. The polysaccharases were inducible by whole yeast cells. In chemostat cultures on chemically defined media, synthesis of the polysaccharases was very slight and only detectable at dilution rates below 0.02 hr?1. Enzyme production in defined media was not solely dependent on growth rate but also was influenced by the growth limiting substrate and the culture history. The production of individual depolymerases and of the lytic activity was studied in batch and chemostat cultures containing yeast as the limiting substrate. The maximum specific growth rate of the Arthrobacter under these conditions was 0.22 hr?1. β-1,3-Glucanase and proteolytic activities were synthesized by exponentially growing bacteria but maximum lytic titers did not develop until the specific growth rate was declining, at which time mannan mannohydrolase syntheses was induced. In yeast limited chemostats polysaccharase syntheses were greatest at the lowest dilution rates examined, namely 0.02 hr?1. Further optimization of enzyme production was achieved by feeding the Arthrobacter culture to a second-stage chemostat. A comparison of lytic enzyme productivities in batch and chemostat cultures has been made.  相似文献   

5.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

6.
Xanthan biopolymer has been produced by single-stage continuous fermentation with Xanthomonas campestris NRRL B-1459 in a medium of glucose, minerals, distillers' solubles, and urea for as long as 20 days. At the highest dilution rate studied (D = 0.0285 hr?1), the steady state rate of xanthan production was 0.36 g/kg/hr and the steady state yield, basis glucose consumed, was 68%. Observations indicate that xanthan production rate is a function of pH and D.  相似文献   

7.
Summary A cheap medium, composed of skimmed milk powder, yeast extract, and glucose, for mass cultivation of the protozoon Tetrahymena thermophila has been developed. Cell concentrations of 5 x 106 cells/ml and unprecedented short generation times of only 1.4 h were determined in batch cultures. During the exponential phase of growth, daughter cells initiated a new cell division even before the previous division had been completed, resulting in the formation of cell chains. Addition of glucose extended the stationary phase. Using a bench-top fermentor supplied with a digital control unit the utilization of nutrient components in batch culture was monitored. Milk protein and glucose were consumed completely, but lactose only partly. Correspondence to: A. Tiedtke  相似文献   

8.
The synthesis of extracellular serine proteinase of Lactococcus lactis was studied during the growth in a batch and a continuous culture on chemically defined media. In a batch culture the proteinase synthesis started during the exponential phase of growth and the highest proteinase concentrations were found at the end of the exponential and beginning of the stationary phase of growth. During the growth in a lactose-limited chemostat with amino acids as the sole source of nitrogen, the specific rate of proteinase synthesis was maximal at a μof 0.23 h?1. At higher growth rates the proteinase productin declined. The proteinase synthesis was dependent on the amino acid sources in the medium. In batch cultures of L. lactis grown on a chemically defined medium with amino acids, the proteinase production was increased four-fold compared to media containing casein or a tryptic digest of casein as the sole source of nitrogen. The inhibition of the rate of proteinase synthesis by casein and peptides was also observed during the growth in a chemostat. The addition of the dipeptide leucylproline (final concentration of 100 μM) to a lactose-limited continuous culture during the steady state (D = 0.23 h?1) resulted in a transient inhibition of the rate of proteinase synthesis. This suggested that exogenously supplied peptides control the regulation of proteinase synthesis of L. lactis.  相似文献   

9.
Cells of Candida utilis grown in a single-stage chemostat at D = 0.05, 0.1, 0.25, and 0.35 hr?l were separated into a fraction of scar-bearing mother cells and a fraction of scar-free daughter cells. The scar-free cells were transferred into small batch cultures where the length of the maturation phase, changes in length and width of cells, specific growth rate, and specific rate of RNA and protein synthesis were examined for 5 hr. The daughter cells grown at D = 0.05 hr?1 were very small at the moment of separation from the mother cells (about one-third of the mother cell). Their maturation phase (in a batch culture), at the beginning of which they attain the specific growth rate approaching the μmax of the strain used, lasts for 3 hr. On the other hand, daughter cells grown at D = 0.35 hr?1 are almost the same size as the mother cells at the moment of separation. After transfer to a batch culture they begin to bud almost immediately. Similarly, in their other morphological and physiological parameters they differ strikingly from immature daughter cells which are formed at low specific growth rates. The importance of these differences from the point of view of mathematical modeling of growth processes is discussed.  相似文献   

10.
Summary The uptake of various 14C labelled compounds like (1-14C) glucose, (1-14C) acetate, (2-14C) uracil, (1-14C) leucine and (14C–CH3) methionine was studied in Aspergillus parasiticus. A comparative study of asparagine deficient, zinc deficient and SLS cultures revealed different growth patterns. High lipid levels under zinc and asparagine deficiency were observed. During the stationary phase the synthesis of proteins and DNA declined. The uptake of 14C labelled glucose, methionine and acetate was maximum in asparagine deficient cultures during the transitional and stationary phase of growth. Maximum uptake of labelled methionine and glucose occured during the exponential growth phase (45 h). The uptake of labelled leucine was highest under asparagine deficiency during the exponential and transitional phases but reached a minimum during stationary phase. The uptake of labelled uracil remained high throughout in the asparagine deficient cultures. The mechanism of inhibition of aflatoxin biosynthesis in the absence of zinc and asparagine seems to be different.  相似文献   

11.
We studied the physiological response to glucose limitation in batch and steady-state (chemostat) cultures of Saccharomyces cerevisiae by following global patterns of gene expression. Glucose-limited batch cultures of yeast go through two sequential exponential growth phases, beginning with a largely fermentative phase, followed by an essentially completely aerobic use of residual glucose and evolved ethanol. Judging from the patterns of gene expression, the state of the cells growing at steady state in glucose-limited chemostats corresponds most closely with the state of cells in batch cultures just before they undergo this "diauxic shift." Essentially the same pattern was found between chemostats having a fivefold difference in steady-state growth rate (the lower rate approximating that of the second phase respiratory growth rate in batch cultures). Although in both cases the cells in the chemostat consumed most of the glucose, in neither case did they seem to be metabolizing it primarily through respiration. Although there was some indication of a modest oxidative stress response, the chemostat cultures did not exhibit the massive environmental stress response associated with starvation that also is observed, at least in part, during the diauxic shift in batch cultures. We conclude that despite the theoretical possibility of a switch to fully aerobic metabolism of glucose in the chemostat under conditions of glucose scarcity, homeostatic mechanisms are able to carry out metabolic adjustment as if fermentation of the glucose is the preferred option until the glucose is entirely depleted. These results suggest that some aspect of actual starvation, possibly a component of the stress response, may be required for triggering the metabolic remodeling associated with the diauxic shift.  相似文献   

12.
The kinetics of penicillin production by Penicillium chrysogenum Wis 54-1255 in a glucose-limited chemostat and in batch cultures are reported. The specific production rate of penicillin, qpen (units per milligram of dry weight per hour) was independent of specific growth rate over the range 0.014 to 0.086 hr-1. Growth was stopped by restricting the glucose supply to the “maintenance ration,” that is, the glucose requirement of the organism at zero growth rate with all other nutrients in excess. Under such conditions, the organism dry weight remained constant, but the qpen fell approximately linearly to zero at a rate inversely related to the previous growth rate. Glucose supplied in excess of the maintenance ration inhibited the decay of qpen. At a critical growth rate between 0.009 and 0.014 hr-1, the decay was completely inhibited. Quantitative expressions for the qpen of growing and nongrowing cultures were derived and used to predict the steady-state concentrations of penicillin accumulating in one- and two-stage continuous processes. A rational explanation of the kinetics of penicillin accumulation in batch cultures is given, relating the rate of penicillin synthesis to growth rate. It is concluded that an important role of corn steep liquor (CSL), a heterogeneous carbon and nitrogen source commonly used in penicillin production media, is the provision of substrates which allow a high concentration of mold to be reached before the growth rate falls below the critical value. CSL had no significant effect on qpen.  相似文献   

13.
Anaplerotic fixation of carbon dioxide by the fungus Aspergillus nidulans when grown under carbon-limited conditions was mediated by pyruvate carboxylase and a phosphoenol pyruvate (PEP)-metabolising enzyme which has been tentatively designated as PEP carboxylase. The activities of both enzymes were growth rate dependent and measurements of H14CO3 incorporation by growing mycelium indicated that they were responsible for almost all the assimilated carbon dioxide. In carbon-limited chemostats, the maximum rate of bicarbonate assimilation occurred at a dilution rate of 0.11 h–1, equivalent to 1/2 max. The affinity of the pyruvate carboxylase for bicarbonate was twice that of the PEP carboxylase under the conditons of growth used. The effect of changing the bicarbonate concentration in carbon-limited chemostats was substantial: increasing the HCO 3 concentration over the range 0.7–2.8 mM enhanced biomass synthesis by 22%. Over-shoots in bicarbonate assimilation and carboxylase activity occurred when steady state chemostat cultures were subjected to a step down in dilution rate.  相似文献   

14.
A flow cytometry analysis and in vitro enzyme activity study is carried out on the methylotrophic yeast, Hansenula polymorpha, during both (a) batch growth and (b) continuous cultures subjected to single perturbations in either system dilution rate or influent carbon substrate composition. Flow cytometry of yeasts growing diauxically on a glucose: methanol mixture during exponential growth, exhibit DNA and RNA distributions indicative of the S-synthesis-phase of the cell cycle. Cells at the stationary growth stage exhibit DNA and RNA distributions that indicate one portion of the population in the G 0/G1 resting phase and another in the M-mitosis-phase.Yeast cells grown at a steady-state of D=0.2 h1, then shifted to D=0.35 h–1, at a constant influent substrate mixture, are also examined with both flow cytometry and in vitro enzyme assays. Distributions of DNA, RNA, and total protein at either steady state and during the shift between dilution rates did not resemble any observed in batch culture. Flow cytometry indicates significant changes in cell composition within 20 min of the imposed dilution rate shift. In vitro enzyme assays show a response time in decreasing methanol oxidase activity of 2.5–3 h upon a dilution rate shift-up, while hexokinase activity increases to its steady-state level in less than 3 h. Similar cell compositional changes are reported for shifts in influent substrate methanol: glucose ratio at a constant dilution rate of D=0.35 h –1. Results suggest that an unsteady-state regime, oscillating between conditions that promote maximum enzyme activity of either glucose- or methanol-metabolizing enzymes, may allow simultaneous enhanced time-averaged production of both sets of enzymes.  相似文献   

15.
Many changes that occur in a cell during the cell cycle can be demonstrated in synchronous cultures and can reveal dimensions of cell metabolism not attainable by the study of balanced growth of asynchronous populations in batch cultures or the steady state in chemostat cultures. The release of 14CO2 from specifically labeled glucose by phased (continuously synchronized) cultures follows a characteristic pattern (profile) that depends upon the stage in the cell cycle and the period of labeling used. Successive profiles throughout a cycle showed differences that were altered under different nutrient-limiting growth conditions. Profiles obtained with glucose-1-14C, glucose-2-14C, glucose-3,4-14C, and glucose-6-14C and phased cells of Candida utilis under N-, P-, and C-limited growth demonstrated the variable character of the metabolic activity that occurred in the cells while contour changes within the profiles across the cycle indicated possible correlations with activities of the hexose monophosphate, Embden-Meyerhof-Parnas, and tricarboxylic acid cycle pathways during the cell cycle. The basis of these changes and their use as elementary parameters for study of problems of physiological changes in vivo are considered.  相似文献   

16.
Acetate formation is a disadvantage in the use of Escherichia coli for recombinant protein production, and many studies have focused on optimizing fermentation processes or altering metabolism to eliminate acetate accumulation. In this study, E. coli MEC697 (MG1655 nadR nudC mazG) maintained a larger pool of NAD(H) compared to the wild‐type control, and also accumulated lower concentrations of acetate when grown in batch culture on glucose. In steady‐state cultures, the elevated total NAD(H) found in MEC697 delayed the threshold dilution rate for acetate formation to a growth rate of 0.27 h?1. Batch and fed‐batch processes using MEC697 were examined for the production of β‐galactosidase as a model recombinant protein. Fed‐batch culture of MEC697/pTrc99A‐lacZ compared to MG1655/pTrc99A‐lacZ at a growth rate of 0.22 h?1 showed only a modest increase of protein formation. However, 1 L batch growth of MEC697/pTrc99A‐lacZ resulted in 50% lower acetate formation compared to MG1655/pTrc99A‐lacZ and a two‐fold increase in recombinant protein production.  相似文献   

17.
An investigation was made to study the processes of fed-batch cultures of a hybridoma cell line in chemically defined protein-free media. First of all, a strong growth-associated pattern was correlated between the production of MAb and growth of cells through the kinetic studies of batch cultures, suggesting the potential effectiveness of extending the duration of exponential growth in the improvement of MAb titers. Second, compositions of amino acids in the feeding solution were balanced stepwisely according to their stoichiometrical correlations with glucose uptake in batch and fed-batch cultures. Moreover, a limiting factor screening revealed the constitutive nature of Ca2+ and Mg2+ for cell growth, and the importance of their feeding in fed-batch cultures. Finally, a fed-batch process was executed with a glucose uptake coupled feeding of balanced amino acids together with groups of nutrients and a feeding of CaCl2 and MgCl2 concentrate. The duration of exponential cell growth was extended from 70 h in batch culture and 98 h in fed-batch culture without Ca2+/Mg2+ feeding to 117 h with Ca2+/Mg2+ feeding. As a result of the prolonged exponential cell growth, the viable and total cell densities reached 7.04 × 106 and 9.12 × 106 cells ml−1, respectively. The maximal MAb concentration achieved was increased to approximately eight times of that in serum supplemented batch culture.  相似文献   

18.
The glucose metabolism and the response of phosphofructokinase activity to oxygen were investigated using glucose-limited chemostat cultures ofE. coli K-12. With a dilution rate of 0.2 hr–1 and a glucose input concentration of 0.83 g/litre, 10 steady states were obtained ranging from 320 to 0 mm HgO2. Dissolved oxygen reached zero level at a pO2 of 25.8 mm Hg. The specific phosphofructokinase activity was constant above 28 mm Hg O2 and increased linearly at lower pO2 levels until it reached highest activity at 0 mm Hg O2. Cell dry weight also started to decrease linearly from 28 to 5.9 mm Hg O2, and fell sharply thereafter. Acid production rate did not start before pO2 reached 25.6 mm Hg, increased progressively with an additional sharp increase below 5.9 mm Hg O2. The main endproducts formed were acetic acid and ethanol with lactic acid appearing below 5.9 mm Hg O2. The results suggest an effect of oxygen on phosphofructokinase synthesis rather than an ATP inhibition of the enzyme.This work was supported by a grant from the Australian Research Grant Commission.  相似文献   

19.
A major variable to consider in the production of biologicals from mammalian cell cultures is the mode of operation, be it a batch, continuous, perfusion, fed-batch or other production method. The final choice must consider a number of fundamental and economic issues. Here we present some antibody production data from different cell lines using different modes of production and discuss the important factors for consideration in choosing a production strategy. It was found that the productivity of batch cultures was lower than that obtained in continuous and perfused cultures, but that productivity could be improved by implementing suitable feeding strategies. The antibody productivity of one cell line, MCL1, during exponential phase was not affected by media type or glucose level. The maximum productivity of two cell lines in continuous culture was found to occur at dilution rates below the maximum, from 0.019 to 0.030 hr–1.  相似文献   

20.
Summary Growth of Saccharomyces cerevisiae was investigated under aerobic conditions in a glucose limited chemostat. The steady state concentrations of cells, glucose and ethanol were measured in dependence of the dilution rate. The growth rate showed a biphasic dependence from the glucose concentration. A shift from respiratory to fermentative metabolism (Crabtree-effect) altering heavily the cell yield and the ethanol yield took place in the range of dilution rates between 0.3 h-1 and 0.5 h-1. Therefore the classical theory of continuous cultures is not applicable on aerobic growth of Saccharomyces cerevisiae under glucose limitation without introducing further premises. On the other hand the steady state cell concentration as a function of the dilution rate fits well the theoretically calculated curves, if cells are cultivated under conditions where only fermentation or respiration is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号