首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

New methods for the synthesis of 2′,3′-didehydro-2′,3′-dideoxy-2′ (and 3′)-methyl-5-methyluridines and 2′,3′-dideoxy-2′ (and 3′)-methylidene pyrimidine nucleosides have been developed from the corresponding 2′ (and 3′)-deoxy-2′ (and 3′)-methylidene pyrimidine nucleosides. Treatment of a 3′-deoxy-3′-methylidene-5-methyluridine derivative 8 with 1,1′-thiocarbonyldiimidazole gave the allylic rearranged 2′,3′-didehydro-2′,3′-dideoxy-3′-[(imidazol-1-yl)carbonylthiomethyl] derivative 24. On the other hand, reaction of 8 with methyloxalyl chloride afforded 2′-O-methyloxalyl ester 25. Radical deoxygenation of both 24 and 25 gave 26 exclusively. Palladium-catalyzed reduction of 2′,5′-di-O-acetyl-3′-deoxy-3′-methylidene-5-methyluridine (32) with triethylammonium formate as a hydride donor regioselectively afforded the 2′,3′-dideoxy-3′-methylidene derivative 35 and 2′,3′-didehydro-2′,3′-dideoxy-3′-methyl derivative 34 in a ratio of 95:5 in 78% yield. These reactions were used on the corresponding 2′-deoxy-2′-methylidene derivatives. An alternative synthesis of 2′,3′-dideoxy-2′-methylidene pyrimidine nucleosides (43, 52, and 54) was achieved from the corresponding 1-(3-deoxy-β-D-thero-pentofuranosyl)pyrimidines (44 and 45). The cytotoxicity against L1210 and KB cells and inhibitory activity of the pathogenicity of HIV-1 are also described  相似文献   

2.
Hydroxychromones and B-ring-substituted 5,6,7-trihydroxyflavones were prepared to evaluate the contribution of the B ring of baicalein (5,6,7-trihydroxyflavone, 1) to its potent α-glucosidase inhibitory activity. Hydroxychromones, which lack 6-hydroxyl substitution, did not show any inhibitory activity, while 5,6,7-trihydroxy-2-methylchromone (5) showed high activity. Among the tested B-ring-substituted 5,6,7-trihydroxyflavones, the 4′-hydroxy-, 3′,4′-dihydroxy-, and 3′,4′,5′-trihydroxy-substituted derivatives were found to give more activity than that of 1. The methoxy-substituted derivatives, however, showed less activity than 1. The results suggest that the B ring of 1 was not essential, although advantageous to the activity; hydroxyl substitution on the B ring of 5,6,7-trihydroxyflavones was favorable to the activity, whereas methoxyl substitution was unfavorable; at least 4′-hydroxyl substitution of 5,6,7-trihydroxyflavones was required for enhanced activity, in which the number of hydroxyl groups did not take part.  相似文献   

3.
Abstract

Reaction of 2′-deoxy-2′-methylidene-5′-O-trityluridine (1) with diethylamino-sulfur trifluoride (DAST) in CH2Cl2 resulted in the formation of a mixture of (3′R)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivative 3 and 2′,3′-didehydro-2′,3′-dideoxy-2′-fluoromethyl derivative 4 (3:4 = 1:1.5) in 65% yield. A similar treatment of 1-(2-deoxy-2-methylidene-5-O-trityl-β-D-threo-pentofuranosyl)uracil (19) with DAST in CH2Cl2 afforded (3′S)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivatives 20 and 4 in 38% and 17% yields respectively. Transformation of the uracil nucleosides 4, 12, and 20 into cytosines followed by deprotection furnished the corresponding cytidine derivatives 29, 18, and 25, respectively. The corresponding thymidine congener 27 was also synthesized in a similar manner. All of the newly synthesized nucleosides were evaluated for their inhibitory activities against HIV and for their antiproliferative activities against L1210 and KB cells.  相似文献   

4.
Abstract

Reaction of (±)but-3-en-1,2-diol (3) with ethyl diazoacetate afforded two cyclopropyl compounds (5) and (6). Their relative trans stereochemistry at C-2 and C-3 has been determined by high-field and computational NMR spectroscopy. (±)Trans-1-(1′,5′-dihydroxy-3′,4′-methylenyl-pent-2′-oxy)methyl]thymine (1d) or -cytosine (1b) and (±)trans-9-(1′,5′-dihydroxy-3′,4′-methylenylpent-2′-oxy)-methyl]adenine (la) or -guanine (1c) have been obtained through a regiospecific alkylation procedure and their antiviral evaluation is reported.  相似文献   

5.
A total synthesis of optically active pyriculol is described. The Wittig reaction between an aldehyde 19 and a triphenylphosphonium ylide 12 gave an intermediate 20. Successive treatment of 20 with p-toluenesulfonic acid, active manganese dioxide, and potassium carbonate gave (3′R,4′S)-pyriculol (23), which was identical with natural pyriculol (1) in all respects. From this synthesis, the absolute stereochemistry of pyriculol (1) was determined to be 2-[(3′R,4′S)-3′,4′-dihydroxy- (1′E,5′E)-1′,5′-heptadienyl]-6-hydroxybenzaldehyde  相似文献   

6.
(±)-(2Z,4E)-α-Ionylideneacetic acid (2) was enantioselectively oxidized to (?)-(l′S)-(2Z,4E)-4′-hydroxy-α-ionylideneacetic acid (3), (+)-(1′R)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid (4) and (+)-abscisic acid (ABA) (1) by Cercospora cruenta IFO 6164, which can produce (+)-ABA and (+)-4′-oxo-α-acid 4. This metabolism was confirmed by the incorporation of radioactivity from (±)-(2-14C)-(2Z,4E)-α-acid 2 into three metabolites. (?)-4′-Hydroxy-α-acid 3 was a diastereoisomeric mixture consisting of major 1′,4′-trance-4′-hydroxy-α-acid 3a and minor 1′,4′-cis-4′-hydroxy-α-acid 3b. These structures, 3a and 3b, were confirmed by 13C-NMR and 1H-NMR analysis. Also, the enantioselectivity of the microbial oxidation was reexamined by using optically pure α-acid (+)-2 and (?)-2, as the substrates.  相似文献   

7.
Abstract

2′,3′-Dibromo-2′,3′-dideoxy-5′-O-trityl-2′,3′-secouridine (8) with sdKF gave the 3′,4′-didehydro-2,2′-anhydro nucleoside 9, which was deprotected to 10. Hydrolysis of 9 gave 3′,4′-didehydro-3′-deoxy-5′-O-trityl-2′,3′-secouridine (11a). Similarly, compound 9 with pyridinium halides gave the corresponding 2′-deoxy-2′-halo nucleosides (11b-d). Compound 11d with azide ion gave 2′-azido analogue 11e. Compound 9 with an excess amount of azide ion gave the 2′-azido triazole (13).  相似文献   

8.
Quinoxaline and benzimidazole derivatives obtained from L-rhamnose and L-fucose under deoxygenated, weakly acidic, heated conditions were studied using GLC, HPLC, and NMR.

Four quinoxalines and one benzimidazole were obtained from L-rhamnose (RHA-I, II, III, III′, and IV) and L-fucose (FUA-I, II, III, IV, and V) in an acidic solution (MeOH-AcOH-H2I = 8 : 1 : 2) at 80°C. The total yield of the products as sugar was about 80% from either rhamnose or fucose.

The structure of RHA-I was (2′S)-2-methyl-3-(2′-hydroxypropyl)quinoxaline; RHA-II, (2′R,3′S)-2-(2′,3′-dihydroxybutyl)quinoxaline; RHA-III, (1′S,2′S,3′S)-2-(1′2′3′-trihydroxybutyl)quinoxaline[2-(L-arabino-1′,2′,3′-trihydroxybutyl)quinoxaline]; RHA-III′, 2-(L-ribo-1′,2′,3′-trihydroxybutyl)quinoxaline; and RHA-IV, 2-(L-manno-1′,2′,3′,4′-tetrahydroxypentyl)-benzimidazole, and the structure of FUA-I was the same as RHA-I; FUA-II, (2′S, 3′S)-2-(2′, 3′-dihydroxybutyl)quinoxaline; FUA-III, (1′R, 2′R, 3′S)-2-(1′,2′,3′-trihydroxybutyl)quinoxaline [2-(L-xylo-1′,2′,3′-trihydroxybutyl)quinoxaline; FUA-IV, 2-(L-lyxo-1′,2′,3′-trihydroxybutyl)-quinoxaline; and FUA-V, 2-(L-galacto-1′,2′,3′,4′-tetrahydroxypentyl)benzimidazole. These results suggest no significant difference for the pathways of quinoxaline and benzimidazole formation between L-rhamnose and L-fucose. Possible pathways are proposed for each sugar.  相似文献   

9.
A new anti‐HIV agent 4′‐cyano‐2′,3′‐didehydro‐3′‐deoxythymidine (9) was synthesized by allylic substitution of the 3′,4′‐unsaturated nucleoside 14, having a leaving group at the 2′‐position, with cyanotrimethylsilane in the presence of SnCl4. Evaluation of the anti‐HIV activity of 9 showed that this compound is much less potent than the recently reported 2′,3′‐didehydro‐3′‐deoxy‐4′‐(ethynyl)thymidine (1).  相似文献   

10.
3′-deoxy-3′-C-trifluoromethyl- (3), 2′,3′-dideoxy-3′-C-trifluoromethyl- (5) and 2′,3′-dideoxy-2′,3′-didehydro-3′-C-trifluoromethyladenosine (6) derivatives have been synthesized and their antiviral properties examined. All these derivatives were stereospecifically prepared by glycosylation of adenine with a trifluoromethyl sugar precursor (1), followed by appropriate chemical modifications. The prepared compounds were tested for their activity against HIV, but they did not show an antiviral effect.  相似文献   

11.
Abstract

The synthesis of 3′,4′-bishydroxymethyl-2′,3′,4′-trideoxy pentopyranosyl derivatives of thymine, uracil, cytosine, and adenine is described. trans-(3S,4S)-Bis(methoxycarbonyl)cyclopentanone (3) was converted to 1-O-acetyl-3,4-C-bis[(tert-butyldiphenylsiloxy)methyl]-2,3,4-trideoxy-α,β-L-threo-pentopyranose (6), which was subsequently condensed with the silylated purine and pyrimidine bases.  相似文献   

12.
Abstract

Starting from 2′,3′,5′-tri-O-acetyl-2-iodoadenosine, 9-(β-D-arabinofuranosyl)-2-(p-n-butylanilino)adenine and its 2′(S)-azido counterparts were synthesized in seven steps. These exhibited only moderate growth-inhibitory effects against mouse leukemic P388 cells (IC50 = 13–24 μM), although 5′-triphosphate derivatives showed strong and selective inhibitory action on calf thymus DNA polymerase α, but not on β- and ?-polymerases from eukaryotes.

  相似文献   

13.
The effects of three tetrachlorobiphenylols [2′,3′,4′,5′-tetrachloro-2-biphenylol (1); 2′,3′,4′,5′-tetrachloro-4-biphenylol (2); and 2′,3′,4′,5′-tetrachloro-3-biphenylol (3)]; three monochlorobiphenylols [5-chloro-2-biphenylol (5), 3-chloro-2-biphenylol (6); and 2-chloro-4-biphenylol (7)] and a tetrachlorobiphenyldiol [3,3′,5,5′-tetrachloro-4,4′-biphenyldiol (4) on respiration, adenosine triphosphatase (ATPase)] activity, and swelling in isolated mouse liver mitochondria have been investigated. Tetrachlorobiphenylols (13) and the tetrachlorobiphenyldiol (4) inhibited state-3 respiration in a concentration-dependent manner with succinate as substrate (flavin adenine dinucleotide [FAD]-linked) and the tetrachlorobiphenyldiol (4) caused a more pronounced inhibitory effect on state-3 respiration than the other congeners. The monochlorobiphenylols 57 were less active as inhibitors of state-3 mitochondrial respiration and significant effects were observed only at higher concentration (≥0.4 μM). However, in the presence of the nicotinamide adenine dinucleotide (NAD)-linked substrates (glutamate plus malate), hydroxylated PCBs (17) significantly inhibited mitochondrial state-3 respiration in a concentration-dependent manner. Compounds 5, 6, and 7 uncoupled mitochondrial oxidative phosphorylation only in the presence of FAD-linked substrate as evidenced by increased oxygen consumption during state-4 respiratory transition, stimulating ATPase activity, releasing oligomycin-inhibited respiration, and inducing mitochondrial swelling (5, 6, and 7). Tetrachlorobiphenylols 1, 2, and 3 had no effect on mitochondrial ATPase activity while the tetrachlorobiphenyldiol, 4, decreased the enzyme activity. The possible inhibitory site of electron transport by these compounds and their toxicologic significance is discussed.  相似文献   

14.
Abstract

Various 6-substituted purine 3′-(2′-) azido-3′, 4′-(2′, 4′-) dideoxy-β-DL-erythro-pentopyranoses (1) (2) have been prepared and compared in terms of a substituent electronegativity parameter. The nucleoside 1a (R=NH2) is a good competitive inhibitor of adenosine deaminase.  相似文献   

15.
Abstract

The syntheses of 2′,3′-didehydro-2′,3′-dideoxyisoinosine (d4isoI, 4) as well as 7-deaza-2′,3′-didehydro-2′,3′-dideoxyisoinosine (d4c7isoI, 5) are described. Compounds 4 and 5 show both strong fluorescence. Compound 4 is oxidized by xanthine oxidase to give the corresponding xanthine 2′,3′-dideoxy-2′,3′-didehydronucleosides. A preparative chemo-enzymatic synthesis of 2′-deoxyxanthosine (3) is described.  相似文献   

16.
( ± )-Methyl phaseates were synthesized from ( ± )-4-(6′-acetoxymethyl-2 ′,6′-dimethyl-1′-cyclohexen-1′-y1)-but-3-en-2-one (20), which was prepared from a useful terpenoid building block, ( ± )-2-hydroxymethyl-2,6-dimethyl-1-cyclohexanone (11a and 11b). Photooxidation of the cyclohexadiene intermediate (22), followed by alkaline hydrolysis and methylation, gave four stereoisomers of ( ± )-methyl phaseates: (2Z,4E)-cis form (2), (2E,4E)-cis form (24), (2Z,4E)-trans form (25) and (2E,4E)-trans form (26).  相似文献   

17.
Abstract

Treatment of O2, 3′-anhydro-5′-O-trityl derivatives of thymidine (1) and 2′-deoxyuridine (2) with lithium azide in dimethylformamide at 150 °C resulted in the formation of the corresponding isomeric 3′-azido-2′, 3′-dideoxy-5′-O-trityl-β-D-ribofuranosyl N1- (the major products) and N3-nucleosides (3/4 and 5/6). 3′-Amino-2′, 3′-dideoxy-β-D-ribofuranosides of thymidine [Thd(3′NH2)], uridine [dUrd(3′NH2)], and cytidine [dCyd(3′NH2)] were synthesized from the corresponding 3′-azido derivatives. The Thd(3′NH2) and dUrd(3′NH2) were used as donors of carbohydrate moiety in the reaction of enzymatic transglycosylation of adenine and guanine to afford dAdo(3′NH2) and dGuo(3′NH2). The substrate activity of dN(3′NH2) vs. nucleoside phosphotransferase of the whole cells of Erwinia herbicola was studied.  相似文献   

18.
Chiral (+)- and (?)-enantiomers of (2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid have been synthesized from the chiral epoxy alcohols (+)- and (?)-1′,2′-dihydro-1′,2′-epoxy-β-ionone, which were prepared by Katsuki-Sharpless' asymmetric epoxidation of β-cyclogeraniol. The (+)-enantiomer showed strong inhibitory activity in a rice seedling and lettuce germination assay, whereas the (?)-enantiomer was 103-times less active.  相似文献   

19.
Efficient syntheses of 14H-dinaphtho[1,8-bc:1′,8′-fg]oxocin-14-one (2), 14H-dinaphtho[1,8-bc:1′,2′-f]oxepin-14-one (3), and 2,2′(2H,2′H)-spirobi[naphtho[1,8-bc]furan] (9) are described. The putative structure of 2 has been reported previously, but the synthetic route was not reproducible. 7H-Dibenzo[c,h]xanthen-7-one (4), a known compound, was obtained by a different method. Possible reaction mechanism are proposed.  相似文献   

20.
In the course of our screening for free radical scavengers, (1′E)-erythro-4-(3′,4′-dihydroxypentenyl)oxazole (1) (1′E,4′S)-4-(3′-oxo-4′-hydroxypentenyl)oxazole (2) and 6-pentyl-α-pyrone (3) were isolated from an unidentified fungal metabolite. These compounds, especially novel oxazolyl compound 2, inhibited the bactericidal effect of the Fenton reagent toward Bacillus subtilis. They and their acetylated compounds (diAc-1 and Ac-2) also showed inhibitory activity against linoleate autoxidation. Furthermore, 1–3 inhibited oxidative enzymes (soybean lipoxygenase and mushroom tyrosinase).

To investigate the radical scavenging mechanism of 3, two oxidized products (4 and 5) were isolated from the reaction mixture of 3 and the Fenton reagent. Compounds 4 and 5 seemed to be derived from 3 by scavenging the hydroxyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号