首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Adenine and thymine derivatives of 2′,3′-dideoxy-2′,3′-didehydropento-pyranosyl nucleosides carrying a phosphonomethyl moiety at their 4′-O-position and in a cis relationship with the heterocyclic base have been synthesized.  相似文献   

2.
Abstract

1-(2,3-Dideoxy-3-C-hydroxmethyl-β-D-threo-pentofuranosyl) -,1- (2,3-didehydro-2,3-dideoxy-3-C-hydroxymethyl-β-D-glycero- pentofuranosyl) -and 1-(3-C-azidomethyl-2,3-dideoxy-3-C-hydroxymethyl-β-D-glycero- pentofuranosyl)uracil, thymine and cytosine were synthesized and evaluated for anti-HIV activity. The synthetic strategy was based on an allylic alcohol transposition of the corresponding 3′-C-methylene-nucleoside analogues.  相似文献   

3.
Abstract

A synthesis of 1-(2,3-dideoxy-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (2′,3′-dideoxyribavirin, ddR) is described. Glycosylation of the sodium salt of 1,2,4-triazole-3-carbonitrile (5) with 1-chloro-2-deoxy-3,5-di-0-p-toluoyl-α-D-erythro-pentofuranose (1) gave exclusively the corresponding N-1 glycosyl derivative with β-anomeric configuration (6), which on ammonolysis provided a convenient synthesis of 2′-deoxyribavirin (7). Similar glycosylation of the sodium salt of methyl 1,2,4-triazole-3-carboxylate (2) with 1 gave a mixture of corresponding N-1 and N-2 glycosyl derivatives (3) and (4), respectively. Ammonolysis of 3 furnished yet another route to 7. A four-step deoxygenation procedure using imidazolylthiocarbonylation of the 3′-hydroxy group of 5′-0-toluoyl derivative (9a) gave ddR (11). The structure of 11 was proven by single crystal X-ray studies. In a preliminary in vitro study ddR was found to be inactive against HIV retrovirus.  相似文献   

4.
Abstract

Radical reactions of 5′-O-(2-bromo-1-methoxy)ethyl- and 5′-O-(2-propynyl)-2′,3′-dideoxy-2′,3′-didehydrouridines were investigated. Both reactions proceeded in a 6-exo-trig manner to give products cyclized regio- and stereospecifically at the 3′-position. The structures of these products were analyzed by X-ray crystallography.

  相似文献   

5.
Abstract

A new approach to the synthesis of 2′,3′-dideoxyadenosine and 2′,3′-dideoxyinosine based on deoxygenation of 2′,3′-di-O-mesylnucleosides was developed.  相似文献   

6.
The synthesis of constrained nucleosides has become an important tool to understand the SAR in the interaction between biological and synthetic nucleotides in the context of antisense oligonucleotide therapy. The incorporation of a cyclopropane into a furanose ring of a nucleoside induces some degree of constrain without affecting significantly the steric environment of a nucleoside. Here, we report a new, short and stereocontrolled synthesis of two constrained nucleosides analogues, 1′,2′- methano-2′,3′-dideoxyuridine 9, and the corresponding cytidine analog 12. X-ray crystallography revealed that the furanose ring in the constrained uridine and cytidine analogues was flattened with virtual loss of pseudorotation. The phosphoramidate esters of the novel constrained uridine and cytidine nucleosides, intended as prodrugs, were tested in cell-based assays for viral replication across the herpes virus family and HIV inhibition courtesy of Merck laboratories, Rahway. They were also tested in antiproliferative assays against colorectal and melanoma cell lines. Unfortunately, none of the compounds showed activity in these assays.  相似文献   

7.
Abstract

The synthesis of 4-methoxy-, 4-amino-3-chloro-, and 4-amino-1-(2,3-dideoxy-B-D-glycero-pentofuranosyl)pyridazin-6-one nucleosides, 6,19 and 20 is described. The synthesis of 3,4-dichloropyridazin-6-one (10) was accomplished in 44% overall yield using bromomaleic anhydride (17) as the starting material. The condensation of the silylated base of 10 with the halogenose 12 in the presence of trimethylsilyl triflate as a catalyst afforded a mixture of3,4-dichloro-1-(3,5-di-O-p-toluoyl-2-deoxy-B-D-erythro-pentofuranosyl)pyrridazin-6-one (13) in 67% and its α-anomer 14 in 12% yield, respectively. A series of 3′-sulfonate esters were prepared to explore the synthesis of 3-chloro-4-hydroxy-1-(3-azido-2,3-dideoxy-B-D-erythro-pentofuranosyl) pyridazin-6-one (32) via 6,3-anhydronucleoside analogues. Compounds 15, 19 and 20 were evaluated against human immunodeficiency virus, human cytomegalovirus, and herpes simplex virus type 1 but were inactive.  相似文献   

8.
Abstract

- The 4-amino-1-(2.3-dideoxy-β-D-glycero-pent-2-enofurano-syl)-1H-irnidazo[4,5-c]pyridine (1) and 4-amino-1-(2,3-dideoxy-β-D-gfycero-pentofuranosyl)-1H-imidazo[4,5-c]pyridine (2), 3-deaza analogues of the anti-HIV agents 2′.3′-didehydro-2′,3′-dideoxyadenosine (d4A) and 2′,3′-dideoxy-adenosine (ddA), have been synthesized. The reaction of 3-deazaadenosine (3) with 2-acetoxyisobutyryl bromide yielded a mixture of cis and trans 2′,3′-ha-lo acetates which was convertcd into olefinic nucleoside (1) on treatment with a Zn/Cu couplc and then with methanolic ammonia. The 2′,3′-dideoxy-3-deazaadenosine (2) was obtained by catalytic reduction of 1. A number of phosphate triester derivatives of 2 have also been prepared. The diethyl-, dipropyl- and dibutylpliospliates 7a-c and 3-deazaadenosine have shown anti-HIV activity at non-cytotoxic doses. Compounds 7a-c have also shown significant cytostatic activity against murine colon adenocarcinoma cells.  相似文献   

9.
Abstract

1-(2,3-Dideoxy-2-C-hydroxymethyl-β-D-threo-pentofuranosyl)-, 1-(2,3-didehydro-2,3-dideoxy-2-C-hydroxymethyl-β-D-glycero-pentofuranosyl)- and 1-(2-C-azidomethyl-2,3-didehydro-2,3-dideoxy-β-D-glycero-pentofuranosyl)uracuracil, thymine and cytosine were synthesized and evaluated for their anti-HIV activities. A key step of the synthesis involves a novel alcohol transposition of2-methylene-nucleoside analogues.  相似文献   

10.
We have identified a selective SN2′ reaction triggered by iodide ion that leads to the ring-opening of 2,2′-anhydro-α-nucleosides. By applying the method, we have synthesized α-d-2′,3′-didehydro-2′,3′-dideoxy-3′-C-hydroxymethyl nucleosides, designed as potential antiviral agents.  相似文献   

11.
Abstract

2′,3′-Dibromo-2′,3′-dideoxy-5′-O-trityl-2′,3′-secouridine (8) with sdKF gave the 3′,4′-didehydro-2,2′-anhydro nucleoside 9, which was deprotected to 10. Hydrolysis of 9 gave 3′,4′-didehydro-3′-deoxy-5′-O-trityl-2′,3′-secouridine (11a). Similarly, compound 9 with pyridinium halides gave the corresponding 2′-deoxy-2′-halo nucleosides (11b-d). Compound 11d with azide ion gave 2′-azido analogue 11e. Compound 9 with an excess amount of azide ion gave the 2′-azido triazole (13).  相似文献   

12.
Abstract

A general method for the synthesis of 2′-C-α-methyl-2′,3′-dideoxynucleosides is presented. Stereofacial selectivity of the 2-C-methylation reaction of γ-lactone has been investigated, in which the presence of a bulky group at the 5-hydroxymethyl produced the α-isomer as a major product. During glycosylation, the α-methyl group directed the formation of nucleosides in favor of the ß-isomer. This methodology is applied to the synthesis of some new pyrimidine and purine nucleosides.

  相似文献   

13.
Abstract

Nucleoside analogues analogues1-(2′,3′-dideoxy-2′-C-hydroxymethyl-β-D-erythro-pentofuranos-yl)thymine (1), 2′,3′-dideoxy-2′-C-hydroxymethylcytidine (2), 2′,3′-dideoxy-2′-C-hydroxymethyladenosine (3), 1-(2′-C-azidomethyl-2′,3′-dideoxy-β-D-erythro-pento-furanosyl)thymine (4), 2′-C-azidomethyl-2′,3′-dideoxycytidine (5), and 2′3′-dideoxy-2′-C-methylcytidine (6) have been synthesized from (S)-4-hydroxymethyl-y-butyro-lactone (7)  相似文献   

14.
Abstract

2′, 3′-Didehydro-2′, 3′-dideoxyisoguanosine (2) and 2′, 3′- dideoxyisoguanosine (3) have been synthesized by utilizing the Corey-Winter approach starting from isoguanosine. The 6-amino and 5′-hydroxy biprotected isoguanosine derivative was converted to the corresponding 2′, 3′- thionocarbonate, which was heated with triethyl phosphite to afford the 2′,3′- olefinic product. Either a tert-butyldimethylsilyl or a 4, 4′-dimethoxytrityl group was used in the protection of 5′-hydroxy function. Compounds 2 and 3 were found inactive against human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), and herpes simplex virus type 1 (HSV-1).

  相似文献   

15.
Abstract

O4′-Nor-2′,3′-dideoxy-2′,3′-didehydronucleoside 5′-triphosphates (acyclo-d4NTP) have been shown to have the properties of effective termination substrates for DNA biosynthesis, catalyzed by several different DNA polymerases.  相似文献   

16.
Abstract

The synthesis of various 2′,3′-dideoxypyrimidine nucleosides, starting from 5-(2,2,2-trifluoroethoxymethyl) (10) and 5-(bis-2,2,2-trifluoroethoxy)methyl-2′-deoxyuridine (11), is described. These compounds were synthesized for screening against herpes simplex virus type-1 and type-2, and HIV virus.  相似文献   

17.
Abstract

The synthesis of 3′,4′-bishydroxymethyl-2′,3′,4′-trideoxy pentopyranosyl derivatives of thymine, uracil, cytosine, and adenine is described. trans-(3S,4S)-Bis(methoxycarbonyl)cyclopentanone (3) was converted to 1-O-acetyl-3,4-C-bis[(tert-butyldiphenylsiloxy)methyl]-2,3,4-trideoxy-α,β-L-threo-pentopyranose (6), which was subsequently condensed with the silylated purine and pyrimidine bases.  相似文献   

18.
Abstract

The preparation of 3-alkyl D4T derivatives has been carried out starting from the corresponding 5′-O-t-butyldimethylsilyl-3′-O-methanesulfonylthymidine 2 by way of deprotection-elimination and succesive alkylation reactions.  相似文献   

19.
Abstract

A convenient synthesis of 2′,3′-dideoxycytidine (ddC, 6) from 2′-deoxycytidine (1) has been achieved employing a base-catalyzed elimination of 3′-O?methanesulfonyl group as the key step.  相似文献   

20.
Abstract

The synthesis of 3′-C-fluoromethyl and 3′-C-azidomethyl nucleosides is reported. The 3′-C-fluoromethyl furanoside 4 was synthesized via fluoride ion induced displacement of the corresponding trifluoromethanesulfonate. The 3′-C-hydroxymethyl furanoside 3 was converted to the corresponding 3′-C-azidomethyl furanoside 6 using triphenylphosphine-carbon tetrabromide-lithium azide. The 3′-C-fluoromethyl furanoside derivative 5 and the 3′-C-azidomethyl furanoside derivative 7 were subsequently condensed with silylated purine and pyrimidine bases. Deblocking and separation of the anomers by chromatography afforded the α- and β-nucleoside analogues. The nucleosides were tested for inhibition of HIV multiplication in vitro and were found to be inactive in the assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号