首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The syntthesis of new N-propargyl-3-pyrrol-1-ylindanamine derivatives, analogues of rasagiline, is described in ten steps starting from the corresponding arylaldehydes via the corresponding cis-3-pyrrol-1-ylindanamines. The cis-configuration of some intermediates has been established using X-ray analysis and NOE experiments. The new N-propargyl-3-pyrrol-1-ylindanamine derivatives were evaluated for their potential MAO-B inhibitor activity in an in vivo model of MPTP-induced Parkinsonism in mice with respect to the potent MAO-B inhibitor rasagiline.  相似文献   

2.
Rasagiline (N-propargyl-1-(R)-aminoindan) is a selective, irreversible monoamine oxidase B (MAO B) inhibitor which has been developed as an anti-Parkinson drug. In controlled monotherapy and as adjunct to L-dopa it has shown anti-Parkinson activity. In cell culture (PC-12 and neuroblastoma SH-SY5Y cells) it exhibits neuroprotective and antiapoptotic activity against several neurotoxins (SIN-1, MPTP, 6-hydroxydopamine and N-methyl-(R)-salsolinol) and ischemia. In vivo, it reduces the sequelae of traumatic brain injury in mice and speeds their recovery. The neuroprotective activity of rasagaline does not result from MAO B inhibition, since its S-enantiomer, TVP1022, which has 1000-fold weaker MAO inhibitory activity, exhibits similar neuroprotective properties. Introduction of a carbamate moiety into the rasagiline molecule to confer cholinesterase inhibitory activity for the treatment of Alzheimer's disease, resulted in compounds TV3326 [(N-Propargyl-(3R)Aminoindan-5-YL)-Ethyl Methyl Carbamate] and its S-enantiomer TV3279 [(N-Propargyl-(3S) Aminoindan-5-YL)-Ethyl Methyl Carbamate], which retain the neuroprotective activities of rasagiline and TVP1022. They also antagonize scopolamine-induced impairments in spatial memory. In addition, TV3326 exhibits brain-selective MAO A and B inhibitory activity after chronic administration and has antidepressant-like activity in the forced swim test. This is associated with an increase in brain levels of serotonin. The antiapoptotic activity of these propargylamine-containing derivatives may be related to their ability to delay the opening of voltage-dependent anion channels (VDAC), which are part of the mitochondrial permeability transition pore. The propargylamine moiety is responsible for the increase in the mitochondrial family of Bcl-2 proteins, prevention in the fall in mitochondrial membrane potential, prevention of the activation of caspase 3, and of translocation of glycerlaldehyde-3-phosphate dehydrogenase from the cytoplasm to the nucleus. The latter processes are closely associated with neurotoxin-induced apoptosis. Rasagiline interacts with and prevents the binding of PK11195 to the pro-apoptotic peripheral benzodiazepine receptor, which together with Bcl-2, hexokinase, porin, and adenine nucleotide translocator constitutes part of the VDAC. Furthermore, rasagiline, TV3326 and TV3279 are able to influence the processing of amyloid precursor protein by activation of alpha-secretase and increasing the release of soluble alpha APP in rat PC-12 and human neuroblastoma SH-SY5Y cells and in rat and mice cortex and hippocampus. This process has been shown to involve the upregulation of PKC and MAP kinase. It is quite likely that the induction of Bcl-2 and activation of PKC by rasagiline and TV3326 is closely linked to the anti-apototic action of these drugs and their ability to process APP by activation of alpha-secretase.  相似文献   

3.
We have recently shown that the anti-Parkinson-propargyl-containing monoamine oxidase B (MAO-B) inhibitor drug, rasagiline [N-propargyl-(1R)-aminoindan], and its cholinesterase inhibitor derivatives TV3326 and TV3279, regulate amyloid precursor protein (APP) processing by a protein kinase C (PKC)-dependent mechanism in SH-SY5Y neuroblastoma and PC12 cells. In the present study, we investigated the effect of rasagiline and its derivatives on the regulation of the PKC-dependent mechanism and APP processing under in vivo conditions. Administration of rasagiline (0.1 mg/kg) to male C57/BL mice for 14 days significantly decreased membrane-bound holoprotein APP levels in the hippocampus. Additionally, we observed that rasagiline up-regulated p-PKC levels and the expression of alpha and epsilon PKC isozymes in the hippocampus, indicating that the mechanism by which rasagiline affects APP processing may be related to PKC-associated signalling. The results also demonstrate that rasagiline treatment significantly elevated the levels of phosphorylated myristoylated alanine-rich C kinase substrate (p-MARCKS), a major substrate for PKC, as well as the levels of receptors for activated C kinase 1 (RACK1). Similar effects on APP and PKC levels were also demonstrated for the two cholinesterase inhibitor derivatives of rasagiline, TV3326 and TV3279. These results indicate that rasagiline and its derivatives regulate PKC-dependent mechanisms and APP processing. The activation and induction of PKC and MARCKS by these drugs may have a crucial role not only in their neuroprotective activity, but also in their ability to affect neuronal plasticity and spatial learning processes.  相似文献   

4.
Abstract: Acute inhibition of monoamine oxidase B (MAO-B) in the rat does not affect striatal dopamine (DA) metabolism, but chronic MAO-B inhibition with deprenyl has been reported to increase the release of striatal DA, as shown using in vitro techniques. To see whether chronic MAO-B inhibition also causes an increase in DA release in vivo, rats were treated for 21 days with either deprenyl (0.25 mg/kg), TVP-1012 [R(+)-N-propargyl-1-aminoindan mesylate; 0.05 mg/kg), an irreversible inhibitor of MAO-B that is not metabolized to amphetamines, clorgyline (0.2 mg/kg), or saline (all doses once daily by subcutaneous injection). Concentric 4-mm-long microdialysis probes were implanted in the left striatum under pentobarbital/chloral hydrate anesthesia on day 21, and microdialysate DA, 3,4-dihydroxyacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenyl acetic acid (HVA) were determined in the conscious animals on day 22. Baseline levels of DA were as follows: control, 0.34 ± 0.04 (n = 13); deprenyl, 0.88 ± 0.10 (n = 8, p < 0.01); TVP-1012, 0.94 ± 0.20 (n = 7, p < 0.01); clorgyline, 0.90 ± 0.12 (n = 7, p < 0.01) pmol/20 min. Levels of DOPAC and HVA were reduced only in the clorgyline-treated group. The incremental release of DA induced by depolarizing concentration of K+ (100 mM bolus of KCl in perfusate) was significantly greater in clorgyline- and deprenyl-treated rats and elevated (nonsignificantly) in TVP-1012-treated rats. Chronic treatment with the MAO-B inhibitors reduced striatal MAO-B activity by 90%, with 15% (TVP-1012) or 40% (deprenyl) inhibition of MAO-A. Clorgyline inhibited MAO-A by 95%, with 30% inhibition of MAO-B. A single dose of deprenyl (0.25 mg/kg, 24 h before microdialysis) had no significant effect on striatal efflux of DA. The results show that DA metabolism was reduced only by clorgyline, whereas neuronal release of DA was enhanced by both MAO-A and MAO-B inhibitors on chronic administration. The enhanced DA release by chronic MAO-B inhibition does not appear to be dependent on production of amphetamine-like metabolites of the inhibitor. Possible mechanisms for the release-enhancing effect of the MAO-B inhibitors include elevation in levels of endogenous β-phenylethylamine, or an inhibition of DA reuptake, which develops only on chronic administration, because both deprenyl and TVP-1012 have only very weak effects on amine uptake in acute experiments.  相似文献   

5.
Summary. Various α/β amino acid derivatives 5 were attached to compounds 3 to yield 2,3-dihydro-1H-pyrrol-3-ones amino acids derivatives 6. This rare heterocyclic amino acid skeleton including the pyrrolo[1,2-b][1,3]oxazol moiety was also successfully prepared in the esteric form. The structure of the new compounds was characterized by spectroscopic methods.  相似文献   

6.
In mitochondria, oxidative phosphorylation and enzymatic oxidation of biogenic amines by monoamine oxidase produce reactive oxygen and nitrogen species, which are proposed to cause neuronal cell death in neurodegenerative disorders, including Parkinson’s and Alzheimer’s disease. In these disorders, mitochondrial dysfunction, increased oxidative stress, and accumulation of oxidation-modified proteins are involved in cell death in definite neurons. The interactions among these factors were studied by use of a peroxynitrite-generating agent, N-morpholino sydnonimine (SIN-1) and an inhibitor of complex I, rotenone, in human dopaminergic SH-SY5Y cells. In control cells, peroxynitrite nitrated proteins, especially the subunits of mitochondrial complex I, as 3-nitrotyrosine, suggesting that neurons are exposed to constant oxidative stress even under physiological conditions. SIN-1 and an inhibitor of proteasome, carbobenzoxy-l-isoleucyl-γ-t-butyl-l-analyl-l-leucinal (PSI), increased markedly the levels of nitrated proteins with concomitant induction of apoptosis in the cells. Rotenone induced mitochondrial dysfunction and accumulation and aggregation of proteins modified with acrolein, an aldehyde product of lipid peroxidation in the cells. At the same time, the activity of the 20S β-subunit of proteasome was reduced significantly, which degrades oxidative-modified protein. The mechanism was proved to be the result of the modification of the 20S β-subunit with acrolein and to the binding of other acrolein-modified proteins to the 20S β-subunit. Increased oxidative stress caused by SIN-1 treatment induced a decline in the mitochondrial membrane potential, ΔΨm, and activated mitochondrial apoptotic signaling and induced cell death in SH-SY5Y cells. As another pathway, p38 mitogen-activated protein (MAP) kinase and exracellular signal-regulated kinase (ERK) mediated apoptosis induced by SIN-1. On the other hand, a series of neuroprotective propargylamine derivatives, including rasagiline [N-propargyl-1(R)aminoindan]and (−)deprenyl, intervened in the activation of apoptotic cascade by reactive oxygen species-reactive nitrogen species in mitochondria through stabilization of the membrane potential, ΔΨm. In addition, rasagiline induced antiapoptotic Bcl-2 and glial cell line-derived neurotrophic factor (GDNF) in SH-SY5Y cells, which was mediated by the ERK-nuclear factor (NF)-κB pathway. These results are discussed in relation to the interaction of oxidative stress and mitochondria in the regulation of neuronal death and survival in neurodegenerative diseases.  相似文献   

7.
Starting from the previously describedtert-butyl esters of 4-epimericN-benzyloxycarbonyl-4-hydroxyprolines andN-benzyloxycarbonyl-4-trans- and 4-cis-trifluoroacetaminoprolinetert-butyl esters, the corresponding uprotected 4-aminoprolines and a number of their partially protected derivatives were synthesized via the intermediate 4-O-mesyl and 4-azide derivatives. The reductive amination ofN-benzyloxycarbonyl-4-oxoprolinetert-butyl ester with ammonium acetate led toN-benzyloxycarbonyl-4-cis-4′-cis- and 4-cis-4′-trans-diprolinylamines. The1H NMR and CD spectra of the synthesized compounds are described.  相似文献   

8.
In the present work, 12 new 2-(5-substituted-benzothiazol-2-ylsulfanyl)-N-(substitutedbenzyl)-N-(4-substitutedphenyl) acetamide derivatives (4a–l) was designed and synthesized. The structures of the synthesized compounds were clarified using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR) and high-resolution mass spectrometry (HRMS) spectral data. Purity of synthesized compounds was checked by high-performance liquid chromatography (HPLC) analyses and purity ratio was found between 96.5–99.9%. The inhibitory activity of the compounds against MAO-A and MAO-B enzymes was evaluated by using in vitro flurometric method in which kynuramine was used as a substrate. Most of the compounds exhibited more selective inhibitory activity towards monoamine oxidase B (MAO-B) than monoamine oxidase A (MAO-A). Compound 4h was determined as the most potent compound against both enzyme types. The MAO-B enzyme kinetic of the compound 4h was studied and nature of MAO-B inhibition, caused by this compound, was investigated. The graphical analysis of steady-state inhibition data indicated that compound 4h is a mixed type inhibitor. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME) properties for the synthesized compounds was also carried out and observed data supported the potential of compound 4h.  相似文献   

9.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
A simple, rapid and reliable spectrophotometry was developed to determine monoamine oxidase (MAO). In this study, 2,4-dinitrophenylhydrazine (DNPH), a classic derivatizing reagent, was used to detect MAO-dependent aldehyde production; and traditional DNPH spectrophotometry was simplified. Benzylamine and serotonin oxidation were catalyzed by MAO-B and MAO-A, respectively, to aldehydes. These were derivatized with DNPH, and the corresponding quinones were further formed by adding NaOH. These DNPH derivatives with large conjugated structures were directly measured spectrophotometrically at 465 nm and 425 nm, without the need for precipitating, washing and suspending procedures. The addition of NaOH caused a red shift of the maximum absorption wavelength of these derivatives, which reduced the interference of free DNPH. MAO-B protein was as low as 47.5 μg in rat liver with correlation coefficients ranging within 0.995–0.999. This method is 2–3 times more sensitive than direct spectrophotometry. The detection of MAO inhibition through this method showed that IC50 values of rasagiline are 8.00 × 10−9 M for MAO-B and 2.59 × 10−7 M for MAO-A. These results are similar to the values obtained by direct spectrophotometry. Our study suggests that DNPH spectrophotometry is suitable to detect MAO activity, and has the potential for MAO inhibitor screening in the treatment of MAO-mediated diseases.  相似文献   

11.
An amination of 4-oxoproline derivatives with glycine methyl or benzyl ester and sodium cyanoborohydride led to the mixtures of corresponding diastereomeric 4-cis- and 4-trans-glycinoproline derivatives. We found that the ratio of diastereomers mainly depends on the structure of 4-oxoproline ester groups and, to a lesser extent, on the structure of N-acyl substituents. The best results were achieved with tert-butyl ester group; it ensured good yields of the amination products and the greatest prevalence of 4-cis-isomers. The structure of ester group in glycine molecule only scarcely affected the resulting ratio of N-(N-benzyloxycarbonylglycyl)-4-glycinoprolines.  相似文献   

12.
Abstract: [3H]Ro 16–6491 [N-(2-aminoethyl)-p-chloroben-zamide HCl], a reversible “mechanism-based” inhibitor of monoamine oxidase (MAO) type B, binds selectively and with high affinity to the active site of MAO-B in brain and platelet membranes. Under normal conditions, the binding of [3H]Ro 16–6491 is fully reversible. However, [3H]Ro 16–6491 could be irreversibly bound (covalently) to membranes by the addition of the reducing agent NaBH3CN to the sample and adjusting to pH 4.5 with acetic acid. No irreversible labelling occurred in the absence of NaBH3CN and at neutral pH. The presence of the irreversible MAO-B inhibitor /-deprenyl completely abolished the irreversible labelling of the membranes by [3H]Ro 16–6491. The selective inactivation of MAO-B, e.g., by /-deprenyl prevented the covalent incorporation of [3H]Ro 16–6491 whereas selective inhibition of the MAO-A by clorgyline was without effect. The covalent linkage to membranes of unlabelled Ro 16–6491 and Ro 19–6327 (a selective and reversible MAO-B inhibitor closely related to Ro 16–6491) after the addition of NaBH3CN at pH 4.5 irreversibly inactivated MAO-B activity whereas MAO-A activity was unaffected. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of labelled membranes showed that [3H]Ro 16–6491 was incorporated into a single polypeptide with a molecular mass identical to the one labelled by [3H]pargyline (58 kilodaltons). Our results indicate that the polypeptide that is covalently labelled by [3H]Ro 16–6491 corresponds to one of the two MAO-B subunits. Therefore, [3H]Ro 16–6491 represents a selective probe for affinity labelling of MAO-B and for the investigation of the structural composition of the active site of the enzyme. Whether the reduction with NaBH3CN at pH 4.5 of the [3H]Ro 16–6491-MAO-B complex results in the formation of a stable adduct with the amino acid chain of the MAO-B or with its prosthetic group, FAD, remains to be elucidated.  相似文献   

13.
Two simple and reliably accessible intermediates, N-carboxypentyl- and N-aminohexyl-1-deoxy-d-galactonojirimycin were employed for the synthesis of a set of terminally N-dansyl substituted derivatives. Reaction of the terminal carboxylic acid of N-carboxypentyl-1-deoxy-d-galactonojirimycin with N-dansyl-1,6-diaminohexane provided the chain-extended fluorescent derivative. Employing bis(6-dansylaminohexyl)amine, the corresponding branched di-N-dansyl compound was obtained. Partially protected N-aminohexyl-1-deoxy-d-galactonojirimycin served as intermediate for two additional chain-extended fluorescent 1-deoxy-d-galactonojirimycin (1-DGJ) derivatives featuring terminal dansyl groups in the N-alkyl substituent. These new compounds are strong inhibitors of d-galactosidases and may serve as leads en route to pharmacological chaperones for GM1-gangliosidosis.  相似文献   

14.
Based on a recent report that 1-methyl-3-phenylpyrrolyl analogues are moderately potent reversible inhibitors of the enzyme monoamine oxidase B (MAO-B), a series of structurally related N-methyl-2-phenylmaleimidyl analogues has been prepared and evaluated as inhibitors of MAO-B. In general, the maleimides were more potent competitive inhibitors than the corresponding pyrrolyl analogues. N-Methyl-2-phenylmaleimide was found to be the most potent inhibitor with an enzyme–inhibitor dissociation constant (Ki value) of 3.49 μM, approximately 30-fold more potent than 1-methyl-3-phenylpyrrole (Ki = 118 μM). This difference in activities may be dependent upon the ability of the maleimidyl heterocyclic system to act as a hydrogen bond acceptor. This is in correspondence with literature reports which suggest that hydrogen bond formation is involved in stabilizing inhibitor–MAO-B complexes. Also reported here is a brief kinetic study of the hydrolysis of the N-methyl-2-phenylmaleimidyl analogues in aqueous solution. The findings of the inhibition studies are discussed with reference to the rate and extent of hydrolysis.  相似文献   

15.
The bis-indole indigoids are a promising protein kinase inhibitor scaffold to be further evaluated against the numerous human diseases that imply abnormal regulation of kinases including neurodegenerative disorders. In an effort to identify new pharmacological inhibitors of disease-relevant protein kinases with increased potency and selectivity, we designed, synthesized new 5,7-disubstituted or 6-substituted bis-indole derivatives. On the basis of our previous synthetic work, 22 selected compounds were tested on CDK1/cyclin B, CDK5/p25, DYRK1A, CK1, and GSK-3α/β kinases, five kinases involved in Alzheimer’s disease. Some of them were also evaluated for their cytotoxic and antiproliferative activities. 6-Nitro-3′-N-oxime-indirubin and 5-amino-3′-N-oxime-indirubin derivatives exhibited inhibitory activity in a submicromolar range against CDK1/cyclin B (0.18 and 0.1 μM, respectively), CK1 (0.6 μM and 0.13 μM) and GSK3 (0.04 μM and 0.36 μM).  相似文献   

16.
Inhibition of MAO-B has been an effective strategy for the treatment of Parkinson’s disease. To find more potent and selective MAO-B inhibitors with novel chemical scaffold, we designed and synthesized a series of new 2,3-dihydro-1H-inden-1-amine derivatives on basis of our previous study. Furthermore, the corresponding structure-activity relationship (SAR) of these compounds is detailedly discussed. Compounds L4 (IC50?=?0.11?μM), L8 (IC50?=?0.18?μM), L16 (IC50?=?0.27?μM) and L17 (IC50?=?0.48?μM) showed similar MAO-B inhibitory activity as Selegiline. Moreover, L4, L16 and L17 also exhibited comparable selectivity with Selegiline, indicating that L4, L16 and L17 could be promising selective MAO-B inhibitors for further study.  相似文献   

17.
Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (Ki = 1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (Ki = 7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (Ki = 0.4 μM) in comparison with MAO-A (Ki = 26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO.  相似文献   

18.
In the present study, a series of fifteen α-tetralone (3,4-dihydro-2H-naphthalen-1-one) derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The α-tetralone derivatives examined are structurally related to a series of chromone (1-benzopyran-4-one) derivatives which has previously been shown to act as MAO-B inhibitors. The results document that the α-tetralones are highly potent MAO-B inhibitors with all compounds exhibiting IC50 values in the nanomolar range (<78 nM). Although most compounds are selective inhibitors of MAO-B, the α-tetralones are also potent MAO-A inhibitors with ten compounds exhibiting IC50 values in the nanomolar range (<792 nM). The most potent MAO-B inhibitor, 6-(3-iodobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 4.5 nM with a 287-fold selectivity for MAO-B over the MAO-A isoform, while the most potent MAO-A inhibitor, 6-(3-cyanobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 24 nM with a 3.25-fold selectivity for MAO-A. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C6 position of the α-tetralone moiety is a requirement for MAO-A and MAO-B inhibition, and that a benzyloxy substituent on this position is more favourable for MAO-A inhibition than phenylethoxy and phenylpropoxy substitution. For MAO-B inhibition, alkyl and halogen substituents on the meta and para positions of the benzyloxy ring enhance inhibitory potency. It may be concluded that α-tetralone derivatives are promising leads for design of therapies for Parkinson’s disease and depression.  相似文献   

19.
The aim of this project was to synthesize and evaluate three novel fluorine-18 labeled derivatives of propargyl amine as potential PET radioligands to visualize monoamine oxidase B (MAO-B) activity.The three fluorinated derivatives of propargyl amine ((S)-1-fluoro-N,4-dimethyl-N-(prop-2-ynyl)-pent-4-en-2-amine (5), (S)-N-(1-fluoro-3-(furan-2-yl)propan-2-yl)-N-methylprop-2-yn-1-amine (10) and (S)-1-fluoro-N,4-dimethyl-N-(prop-2-ynyl)pentan-2-amine (15)) were synthesized in multi-step organic syntheses. IC50 values for inhibition were determined for compounds 5, 10 and 15 in order to determine their specificity for binding to MAO-B. Compound 5 inhibited MAO-B with an IC50 of 664 ± 48.08 nM. No further investigation was carried out with this compound. Compound 10 inhibited MAO-B with an IC50 of 208.5 ± 13.44 nM and compound 15 featured an IC50 of 131.5 ± 0.71 nM for its MAO-B inhibitory activity. None of the compounds inhibited MAO-A activity (IC50 > 2 μM).The fluorine-18 labeled analogues of the two higher binding affinity compounds (10 and 15) (S)-N-(1-[18F]fluoro-3-(furan-2-yl)propan-2-yl)-N-methylprop-2-yn-1-amine (16) and (S)-1-[18F]fluoro-N,4-dimethyl-N-(prop-2-ynyl)pentan-2-amine (18) were both prepared from the corresponding precursors 9A, 9B and 14A, 14B by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography experiments on human postmortem brain tissue sections were performed with 16 and 18. Only compound 18 demonstrated a high selectivity for MAO-B over MAO-A and was, therefore, chosen for further examination by PET in a cynomolgus monkey.The initial uptake of 18 in the monkey brain was 250% SUV at 4 min post injection. The highest uptake of radioactivity was observed in the striatum and thalamus, regions with high MAO-B activity, whereas lower levels of radioactivity were detected in the cortex and cerebellum. The percentage of unchanged radioligand 18 was 30% in plasma at 90 min post injection.In conclusion, compound 18 is a selective inhibitor of MAO-B in vitro and demonstrated a MAO-B specific binding pattern in vivo by PET in monkey. It can, therefore, be considered as a candidate for further investigation in human by PET.  相似文献   

20.
D J Patel  A E Tonelli 《Biopolymers》1976,15(8):1623-1635
Conformations containing all trans peptide bonds have previously been proposed for N-methylleucine gramicidin-S and (di-N-methylleucine) gramicidin-S based on an evaluation of proton nuclear magnetic resonance parameters in a series of solvents. These gramicidin-S derivatives exhibit full biological activity despite the fact that the proposed solution conformations differ in backbone topology and relative orientation of the Phe and Orn side chains compared to gramicidin-S. The present authors discuss conformations for N-methylleucine gramicidin-S and (di-N-methylleucine) gramicidin-S which incorporate cis peptide bonds at L -Orn-L -N-MeLeu, where the gramicidin-S backbone is essentially retained, and the relative orientation of the Pro, Orn, Val, and Phe side chains correspond to those observed for gramicidin-S. A novel hydrogen-bond arrangement involving one carbonyl group interacting with two peptide protons (1 ←4 and 1 ←5 types) is proposed to stabilize the backbone conformation in the gramicidin-S derivatives. A recent report on the cyclic heptapeptide antibiotic, Ilamycin B1, shows the presence of cis peptide bonds at N-CH3 amino acids, as well as the novel hydrogen-bond arrangement presented above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号