首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxidative stress in mitochondria
Authors:Makoto Naoi  Wakako Maruyama  Masayo Shamoto-Nagai  Hong Yi  Yukihiro Akao  Masashi Tanaka
Institution:(1) Gifu International Institute of Biotechnology, Kakamigahara, Gifu, Japan;(2) Department of Geriatrics, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
Abstract:In mitochondria, oxidative phosphorylation and enzymatic oxidation of biogenic amines by monoamine oxidase produce reactive oxygen and nitrogen species, which are proposed to cause neuronal cell death in neurodegenerative disorders, including Parkinson’s and Alzheimer’s disease. In these disorders, mitochondrial dysfunction, increased oxidative stress, and accumulation of oxidation-modified proteins are involved in cell death in definite neurons. The interactions among these factors were studied by use of a peroxynitrite-generating agent, N-morpholino sydnonimine (SIN-1) and an inhibitor of complex I, rotenone, in human dopaminergic SH-SY5Y cells. In control cells, peroxynitrite nitrated proteins, especially the subunits of mitochondrial complex I, as 3-nitrotyrosine, suggesting that neurons are exposed to constant oxidative stress even under physiological conditions. SIN-1 and an inhibitor of proteasome, carbobenzoxy-l-isoleucyl-γ-t-butyl-l-analyl-l-leucinal (PSI), increased markedly the levels of nitrated proteins with concomitant induction of apoptosis in the cells. Rotenone induced mitochondrial dysfunction and accumulation and aggregation of proteins modified with acrolein, an aldehyde product of lipid peroxidation in the cells. At the same time, the activity of the 20S β-subunit of proteasome was reduced significantly, which degrades oxidative-modified protein. The mechanism was proved to be the result of the modification of the 20S β-subunit with acrolein and to the binding of other acrolein-modified proteins to the 20S β-subunit. Increased oxidative stress caused by SIN-1 treatment induced a decline in the mitochondrial membrane potential, ΔΨm, and activated mitochondrial apoptotic signaling and induced cell death in SH-SY5Y cells. As another pathway, p38 mitogen-activated protein (MAP) kinase and exracellular signal-regulated kinase (ERK) mediated apoptosis induced by SIN-1. On the other hand, a series of neuroprotective propargylamine derivatives, including rasagiline N-propargyl-1(R)aminoindan]and (−)deprenyl, intervened in the activation of apoptotic cascade by reactive oxygen species-reactive nitrogen species in mitochondria through stabilization of the membrane potential, ΔΨm. In addition, rasagiline induced antiapoptotic Bcl-2 and glial cell line-derived neurotrophic factor (GDNF) in SH-SY5Y cells, which was mediated by the ERK-nuclear factor (NF)-κB pathway. These results are discussed in relation to the interaction of oxidative stress and mitochondria in the regulation of neuronal death and survival in neurodegenerative diseases.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号