首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calbindin D28k and D9k are two cytosolic calcium-binding proteins abundant in intestinal absorptive cells which appear to play a role in calcium translocation. Until today, calbindin D28k was found in avian and reptilian absorptive cells but not in mammalian ones. We have described the presence of calbindin D28k-immunoreactivity in intestinal absorptive cells of pig and jerboa (Jaculus jaculus). Pig calbindin D28k-immunoreactive absorptive cells were prominent in duodenum, they were scattered along the villi and nearly absent in the crypts. Jerboa labelled absorptive cells were located along the colonic mucosal surface. No calbindin D28k could be detected in mouse, rat and goat absorptive cells. Topography of calbindin D28k absorptive cells was compared with calbindin D9k distribution. Our results confirmed the data of the literature showing a gradient of labelling increasing from the crypt to the top of the villus and no positive endocrine cell. Young (48 h old) pigs did not expressed calbindin D28k in absorptive cells although calbindin D9k was detected. Calbindin D28K was also observed in endocrine cells which were numerous in pig and goat duodenum and very rare in mouse and jerboa. Western blot experiments confirmed the presence of calbindin D28k in the adult pig intestine, in the jerboa colon and the absence of cross-reactivity between calbindin D28k antibody and calbindin D9k.  相似文献   

2.
The exact role of calbindin D9k in vitamin D-mediated calcium absorption has been debated but remains unsettled. In 129/OlaHsd mice, calbindin D9k was found highest in duodenum (36-50%) and kidney (24-34%) followed by stomach, lung and uterus. Age does not affect the relative distribution of calbindin D9k but it does decline with age in duodenum of both male and female 129/Ola mice. Recently, we produced a null calbindin D9k mutant 129/OlaHsd mouse; this mouse proved to be indistinguishable from the wild-type in phenotype and in a serum calcium level regardless of age or gender. We have now examined directly whether the mutant mouse can absorb calcium from the intestine in response to the active form of vitamin D. The calbindin D9k null mutant mouse is fully able to absorb calcium from the intestine in response to 1,25-dihydroxyvitamin D3. It is, therefore, clear that calbindin D9k is not required for vitamin D-induced intestinal calcium absorption.  相似文献   

3.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

4.
The aim of the present study was to examine quantitatively whether two calcium-binding proteins, calbindin D28k and calretinin, are localized in oxytocin and vasopressin neurons of the supraoptic nucleus of the male rat. We used a triple-labeling immunofluorescence method with a confocal laser scanning microscope. Of the oxytocin-labeled cells, 70% were stained for both calbindin D28k and calretinin, 15% were stained for only calbindin D28k, 13% were stained for only calretinin, and 2% were stained for neither protein. Of the vasopressin-labeled cells, 73% were stained for neither calbindin D28k nor calretinin, 21% were stained for only calbindin D28k, 4% were stained for only calretinin, and 2% were stained for both proteins. Calbindin D28k and calretinin have been shown previously to contribute to calcium homeostasis by buffering [Ca2+]i. Therefore, these findings suggest that most of the oxytocin neurons may have a higher Ca(2+)-buffering capacity than most of the vasopressin neurons.  相似文献   

5.
Abstract: The distribution of calretinin, calbindin D28k, and parvalbumin was examined in subcellular fractions prepared from rat cerebellum and analyzed by immunoblot. Calretinin was also quantified by radioimmunoassay. As expected, all three soluble, EF-hand calcium-binding proteins were predominantly localized in the cytosolic fraction. Calretinin and calbindin D28k were also detected in membrane fractions. Calretinin was more abundant in synaptic membrane than in microsomal fractions. The cerebellar microsomal fraction contained the greatest concentration of membrane-associated calbindin D28k. The association of calretinin and calbindin D28k with membrane fractions was decreased in samples prepared or incubated in low calcium. Quantification of calretinin in subcellular fractions of rat cerebellum revealed a greater amount of calretinin in cytosolic fractions prepared or incubated in low calcium and reduced amounts of calretinin in all membrane fractions incubated in low calcium with the exception of the mitochondrial fraction. These results imply that calretinin and calbindin D28k might have physiological target molecules that are associated with, or are components of, brain membranes.  相似文献   

6.
The distribution and ultrastructural characteristics of calbindin D-28k immunoreactive nerve fibers were examined in the carotid body of the normoxic control rats by light and electron microscopy, and the abundance of calbindin D-28k fibers in the carotid body was compared in normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). Calbindin D-28k immunoreactivity was recognized in nerve fibers within the carotid body. Calbindin D-28k immunoreactive nerve fibers appeared as thin processes with many varicosities. They were distributed around clusters of glomus cells, and around blood vessels. Immunoelectron microscopy revealed that the calbindin D-28k immunoreactive nerve terminals are in close apposition with the glomus cells, and membrane specialization is visible in some terminals. Some dense-cored vesicles in the glomus cells were aggregated in this contact region. The chronically hypoxic carotid bodies were found to be enlarged several fold, and a relative abundance of calbindin D-28k fibers was lesser than in the normoxic carotid bodies. When expressed by the density of varicosities per unit area of the parenchyma, the density of calbindin D-28k fibers associated with the glomus cells in chronically hypoxic carotid bodies was decreased by 70%. These immunohistochemical findings indicate a morphological basis for involvement of calcium binding protein in the neural pathway that modulates carotid body chemoreception.  相似文献   

7.
Immunoreactivity for the calcium binding protein, calbindin D28k has been localized in enterochromaffin-like (ECL) cells of the human stomach. The reactivity was observed with three different antisera, raised against bovine brain, primate brain, and chicken intestinal calbindin. The ECL cells were closed endocrine cells located at the bases of the oxyntic glands. They were not found in other regions of the stomach. No other gastric endocrine cells were reactive with these antisera.  相似文献   

8.
Vitamin D target proteins: function and regulation   总被引:13,自引:0,他引:13  
  相似文献   

9.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

10.
A calcium binding protein that is biochemically similar to vertebrate 28,000-Mr vitamin D-dependent calcium binding protein (calbindin-D28k) has been purified from squid brain. Squid brain calbindin was found to have an isoelectric point of 5.0, was heat stable up to 60 degrees C, and showed increased electrophoretic mobility in the presence of chelator. Amino acid analysis revealed a high content of glutamic and aspartic acids and a low level of methionine, histidine, and tyrosine, a finding similar but not identical to the composition of vertebrate calbindin-D28k. The molecular weight of the squid protein, determined by Ferguson plot analysis of data obtained from sodium dodecyl sulfate-gel electrophoresis, was calculated to be 25,700, as compared with 27,800 for rat renal calbindin. Immunocytochemical analysis demonstrated immunoreactive protein in a selected population of neurons and fibers in several areas of the molluscan nervous system. This study represents the first purification from an invertebrate of a calcium binding protein that is biochemically similar to vitamin D-dependent calcium binding protein. These results demonstrate that calbindin, although not identical in vertebrates and cephalopods, may be phylogenetically conserved in structure. The restricted distribution of immunoreactive calbindin in both the cephalopod and mammalian brain suggests that the function of neuronal calbindin may also be conserved in evolution.  相似文献   

11.
12.
13.
Quantitative methods of in situ hybridization and immunocytochemistry have been used to measure 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) induction of calbindin mRNA and calbindin protein expressed in jejunal enterocytes at all points along the crypt-villus axis over a 24 h period. Small amounts of calbindin mRNA detected in vitamin D3 deficient (D-deficient) chick intestine increased rapidly to maximal values 8 h after hormone injection. The magnitude of this response was inversely related to age of enterocyte measured separately by injecting tritiated thymidine into D-deficient and 1,25(OH)2D3-injected birds. Enterocytes of all ages expressed small amounts of calbindin 3 h after hormone injection. This amount of calbindin then increased up to 24 h after hormone injection. Maximal calbindin expression took place in basal villus enterocytes. Later decrease in the ability of upper villus enterocytes to express calbindin was associated with a similar fall in calbindin mRNA expression. Previously it was suggested that inefficient translation to calbindin mRNA might take place in basal villus enterocytes 48 h after vitamin D injection. Present work using 1,25 (OH)2D3 shows that calbindin expression takes place at a constant rate during this early stage of enterocyte development. Secondary events limiting higher rates of calbindin synthesis in upper crypt and basal villus enterocytes remain to be identified.  相似文献   

14.
Abstract: Previous studies have revealed changes in immunohistochemical stains for calcium-binding proteins after manipulations that influence intracellular calcium. Cases have been revealed in which these changes in immunoreactivity were not correlated with changes in protein amounts. The present experiments examined whether these effects might be explained by changes in antiserum recognition due to calcium-induced changes in protein conformation. Calretinin, calbindin D28k, and parvalbumin incubated in high calcium were recognized by antisera better than when they were incubated in low calcium. Using a calbindin D28k antibody, it was shown that this effect occurs within physiological calcium concentrations. Formalin fixation of the proteins in the presence of calcium resulted in greater antibody recognition than did fixation of proteins in calcium-free states. The calretinin antiserum appeared to recognize a portion of the molecule previously shown to undergo calcium-dependent conformational changes. A calcium-insensitive antiserum was made to a different fragment of calretinin. These results indicate that some antibodies to calcium-binding proteins preferentially recognize particular calcium-induced protein conformations. Given the potential for wide fluctuations in neuronal calcium, the present results indicate that quantitative estimates of intracellular calcium-binding proteins obtained from immunohistochemical studies of neurons must be interpreted with caution.  相似文献   

15.
Human calbindin D(28k) is a Ca(2+) binding protein that has been implicated in the protection of cells against apoptosis. In this study, the structural and functional significance of the five cysteine residues present in this protein have been investigated through a series of cysteine-to-serine mutations. The mutants were studied under relevant physiological redox potentials in which conformational changes were monitored using ANS binding. Urea-induced denaturations, as monitored by intrinsic tryptophan fluorescence, were also carried out to compare their relative stability. It was shown that the two N-terminal cysteine residues undergo a redox-driven structural change consistent with disulfide bond formation. The other cysteine residues are not by themselves sufficient at inducing structural change, but they accentuate the disulfide-dependent conformational change in a redox-dependent manner. Mass spectrometry data show that the three C-terminal cysteine residues can be modified by glutathione. Furthermore, under oxidizing conditions, the data display additional species consistent with the conversion of cysteine thiols to sulfenic acids and disulfides to disulfide-S-monoxides. The biological function of calbindin D(28k) appears to be tied to the redox state of the cysteine residues. The two N-terminal cysteine residues are required for activation of myo-inositol monophosphatase, and enzyme activation is enhanced under conditions in which these residues are oxidized. Last, oxidized calbindin D(28k) binds Ca(2+) with lower affinity than does the reduced protein.  相似文献   

16.
Calbindin D(28K) is a six-EF-hand calcium-binding protein found in the brain, peripheral nervous system, kidney, and intestine. There is a paucity of information on the effects of calcium binding on calbindin D(28K) structure. To further examine the mechanism and structural consequences of calcium binding to calbindin D(28K) we performed detailed complementary heteronuclear NMR and microelectrospray mass spectrometry investigations of the calcium-induced conformational changes of calbindin D(28K). The combined use of these two powerful analytical techniques clearly and very rapidly demonstrates the following: (i). apo-calbindin D(28K) has an ordered structure which changes to a notably different ordered conformation upon Ca(2+) loading, (ii). calcium binding is a sequential process and not a simultaneous event, and (iii). EF-hands 1, 3, 4, and 5 take up Ca(2+), whereas EF-hands 2 and 6 do not. Our results support the opinion that calbindin D(28K) has characteristics of both a calcium sensor and a buffer.  相似文献   

17.
The distribution and morphology of neurons containing neuronal nitric oxide synthase (NOS), and calcium-binding proteins calbindin D28K and calretinin in the hamster visual cortex were compared by immunocytochemistry. Staining for NOS, calbindin D28K and calretinin was seen both in the specific layers and in the selective cell types. The densest concentration of anti-NOS-immunoreactive (IR) neurons was found in layer VI. Most of the calbindin D28K-IR neurons were located in layers II/III and V while the calretinin-IR neurons were predominantly located in layers II/III. The labeled neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. The majority of the calbindin D28K-IR neurons were stellate and round or oval cells with multipolar dendrites. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. Our study showed that 14.7% and 27.5% of the NOS-IR cells in the hamster visual cortex contained calbindin D28K or calretinin, respectively. These results indicate that NOS, calbindin and calretinin are located in specific layers and specific cell types and the vast majority of NOS-containing neurons are limited to neurons that do not express calbindin D28K or calretinin.  相似文献   

18.
Calbindin D28k is an intracellular Ca(2+)-binding protein containing six subdomains of EF-hand type. The number and identity of the globular domains within this protein have been elucidated using six synthetic peptide fragments, each corresponding to one EF-hand subdomain. All six peptides were mixed in equimolar amounts in the presence of 10 mM Ca2+ to allow for the reconstitution of domains. The mixture was compared to native calbindin D28k and to the sum of the properties of the individual peptides using circular dichroism (CD), fluorescence, and 1H NMR spectroscopy, as well as gel filtration and ion-exchange chromatography. It was anticipated that if the peptides associate to form native-like domains, the properties would be similar to those of the intact protein, whereas if they did not interact, they would be the same as the properties of the isolated peptides. The results show that the peptides in the mixture interact with one another. For example, the CD and fluorescence spectra for the mixture are very similar to those of the intact calbindin D28k, suggesting that the mixed EF-hand fragments associate to form a native-like structure. To determine the number of domains and the subdomain composition of each domain in calbindin D28k, a variety of peptide combinations containing two to five EF-hand fragments were studied. The spectral and chromatographic properties of all the mixtures containing less than six peptides were closer to the sum of the properties of the relevant individual peptides than to the mixture of the six peptides. The results strongly suggest that all six EF-hands are packed into one globular domain. The association of the peptide fragments is observed to drive the folding of the individual subdomains. For example, one of the fragments, EF2, which is largely unstructured in isolation even in the presence of high concentrations of Ca2+, is considerably more structured in the presence of the other peptides, as judged by CD difference spectroscopy. The CD data also suggest that the packing between the individual subdomains is specific.  相似文献   

19.
Although it was originally proposed that the major role of calbindin is to facilitate the vitamin D dependent movement of calcium through the cytosolic compartment of the intestinal or renal cell, we found that calbindin also has a major role in different cell types in protecting against apoptotic cell death. Calbindin, which buffers calcium, can inhibit apoptosis induced by different proapoptotic stimuli. Expression of calbindin-D(28k) in neural cell suppressed the proapoptotic actions of presenilin-1, which is causally linked to familial Alzheimer's disease, by preventing calcium mediated mitochondrial damage and the subsequent release of cytochrome c. Calbindin, by buffering intracellular calcium can also protect HEK 293 kidney cells from parathyroid hormone induced apoptosis that was found to be mediated by a phospholipase C dependent increase in intracellular calcium. In addition, cytokine mediated destruction of pancreatic beta cells can be prevented by calbindin. Induction by cytokines of nitric oxide, peroxynitrite and lipid hydroperoxide production was significantly decreased in calbindin expressing beta cells. Thus, calbindin-D(28k), by inhibiting free radical formation, can protect islet beta cells from autoimmune destruction in type 1 diabetes. Calbindin-D(28k) can also protect against apoptosis in bone cells. Calbindin was found to block apoptosis in osteocytic and osteoblastic cells. Our findings suggest that calbindin is capable of directly inhibiting the activity of caspase-3, a common downstream effector of multiple apoptotic signaling pathways, and that this inhibition results in an inhibition of tumor necrosis factor (TNFalpha) and glucocorticoid induced apoptosis in bone cells. Thus, while part of calbindin's protective effect may result from buffering rises in intracellular calcium, other mechanisms of action, such as inhibition of caspase activity, also play a significant role in the prevention of apoptosis by calbindin-D(28k). These findings have implications for the prevention of degeneration in different cell types and therefore could prove important for the therapeutic intervention of many diseases, including diabetes and osteoporosis.  相似文献   

20.
Calcium-binding proteins are abundantly expressed in many neurons of mammalian retinae. Their physiological roles are, however, largely unknown. This is particularly true for calcium-modulating proteins (“calcium buffers”) such as calbindin D28k. Here, we have studied retinae of wildtype (+/+) and calbindin-null mutant (–/–) mice by using immunocytochemical methods. Although calbindin immunoreactivity was completely absent in the calbindin (–/–) retinae, those cells that express the protein in wildtype retinae, such as horizontal cells, were still present and appeared normal. This was verified by immunostaining horizontal cells for various neurofilament proteins. In order to assess whether other calcium-binding proteins are upregulated in the mutant mouse and may thus compensate for the loss of calbindin, mouse retinae were also immunolabeled for parvalbumin, calretinin, and a calmodulin-like protein (CALP). In no instance could a change in the expression pattern of these proteins be detected by immunocytochemical methods. Thus, our results show that calbindin is not required for the maintenance of the light-microscopic structure of the differentiated retina and suggest roles for this protein in retinal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号