首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mismatch repair proteins act during double-strand break repair (DSBR) to correct mismatches in heteroduplex DNA, to suppress recombination between divergent sequences, and to promote removal of nonhomologous DNA at DSB ends. We investigated yeast Msh2p association with recombination intermediates in vivo using chromatin immunoprecipitation. During DSBR involving nonhomologous ends, Msh2p localized strongly to recipient and donor sequences. Localization required Msh3p and was greatly reduced in rad50delta strains. Minimal localization of Msh2p was observed during fully homologous repair, but this was increased in rad52delta strains. These findings argue that Msh2p-Msh3p associates with intermediates early in DSBR to participate in the rejection of homeologous pairing and to stabilize nonhomologous tails for cleavage by Rad1p-Rad10p endonuclease.  相似文献   

2.
A cdc13 temperature-sensitive mutant of Saccharomyces cerevisiae arrests in the G2 phase of the cell cycle at the restrictive temperature as a result of DNA damage that activates the RAD9 checkpoint. The DNA lesions present after a failure of Cdc13p function appear to be located almost exclusively in telomere-proximal regions, on the basis of the profile of induced mitotic recombination. cdc13 rad9 cells dividing at the restrictive temperature contain single-stranded DNA corresponding to telomeric and telomere-proximal DNA sequences and eventually lose telomere-associated sequences. These results suggest that the CDC13 product functions in telomere metabolism, either in the replication of telomeric DNA or in protecting telomeres from the double-strand break repair system. Moreover, since cdc13 rad9 cells divide at a wild-type rate for several divisions at the restrictive temperature while cdc13 RAD9 cells arrest in G2, these results also suggest that single-stranded DNA may be a specific signal for the RAD9 checkpoint.  相似文献   

3.
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in haploid cells is generally restricted to S/G2 cell cycle phases, when DNA has been replicated and a sister chromatid is available as a repair template. This cell cycle specificity depends on cyclin-dependent protein kinases (Cdk1 in Saccharomyces cerevisiae), which initiate HR by promoting 5'-3' nucleolytic degradation of the DSB ends. Whether Cdk1 regulates other HR steps is unknown. Here we show that yku70Δ cells, which accumulate single-stranded DNA (ssDNA) at the DSB ends independently of Cdk1 activity, are able to repair a DSB by single-strand annealing (SSA) in the G1 cell cycle phase, when Cdk1 activity is low. This ability to perform SSA depends on DSB resection, because both resection and SSA are enhanced by the lack of Rad9 in yku70Δ G1 cells. Furthermore, we found that interchromosomal noncrossover recombinants are generated in yku70Δ and yku70Δ rad9Δ G1 cells, indicating that DSB resection bypasses Cdk1 requirement also for carrying out these recombination events. By contrast, yku70Δ and yku70Δ rad9Δ cells are specifically defective in interchromosomal crossover recombination when Cdk1 activity is low. Thus, Cdk1 promotes DSB repair by single-strand annealing and noncrossover recombination by acting mostly at the resection level, whereas additional events require Cdk1-dependent regulation in order to generate crossover outcomes.  相似文献   

4.
5.
Spell RM  Jinks-Robertson S 《Genetics》2003,165(4):1733-1744
To prevent genome instability, recombination between sequences that contain mismatches (homeologous recombination) is suppressed by the mismatch repair (MMR) pathway. To understand the interactions necessary for this regulation, the genetic requirements for the inhibition of homeologous recombination were examined using mutants in the RAD52 epistasis group of Saccharomyces cerevisiae. The use of a chromosomal inverted-repeat recombination assay to measure spontaneous recombination between 91 and 100% identical sequences demonstrated differences in the fidelity of recombination in pathways defined by their dependence on RAD51 and RAD59. In addition, the regulation of homeologous recombination in rad51 and rad59 mutants displayed distinct patterns of inhibition by different members of the MMR pathway. Whereas the requirements for the MutS homolog, MSH2, and the MutL homolog, MLH1, in the suppression of homeologous recombination were similar in rad51 strains, the loss of MSH2 caused a greater loss in homeologous recombination suppression than did the loss of MLH1 in a rad59 strain. The nonequivalence of the regulatory patterns in the wild-type and mutant strains suggests an overlap between the roles of the RAD51 and RAD59 gene products in potential cooperative recombination mechanisms used in wild-type cells.  相似文献   

6.
DNA mismatch repair influences the outcome of recombination events between diverging DNA sequences. Here we discuss how mismatch repair proteins are active in different homologous recombination subpathways and specific reaction steps, resulting in differential modulation of these recombination events, with a focus on the mechanism of heteroduplex rejection during the inhibition of recombination between slightly diverged (homeologous) DNA sequences.  相似文献   

7.
8.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

9.
A direct repeat recombination assay between SUP4 heteroalleles detects unrepaired heteroduplex DNA (hDNA) as sectored colonies. The frequency of unrepaired heteroduplex is dependent on the mismatch and is highest in a construct that generates C:C or G:G mispairs and lowest in one that generates T:G or C:A mispairs. In addition, unrepaired hDNA increases for all mismatches tested in pms1 mismatch repair-deficient strains. These results support the notion that hDNA is formed across the SUP4 repeats during the recombination event and is then subject to mismatch repair. The effects of various repair and recombination defective mutations on this assay were examined. Unrepaired heteroduplex increases significantly only in rad52 mutant strains. In addition, direct repeat recombination is reduced 2-fold in rad52 mutant strains, while in rad51, rad54, rad55 and rad57 mutants direct repeat recombination is increased 3-4-fold. Mutations in the excision repair gene, RAD1, do not affect the frequency of direct repeat recombination. However, the level of unrepaired heteroduplex is slightly decreased in rad1 mutant strains. Similar to previous studies, rad1 rad52 double mutants show a synergistic reduction in direct repeat recombination (35-fold). Interestingly, unrepaired heteroduplex is reduced 4-fold in the double mutants. Experiments with shortened repeats suggest that the reduction in unrepaired heteroduplex is due to decreased hDNA tract length in the double mutant strain.  相似文献   

10.
Mismatch repair (MMR) systems are central to maintaining genome stability in prokaryotes and eukaryotes. MMR proteins play a fundamental role in avoiding mutations, primarily by removing misincorporation errors that occur during DNA replication. MMR proteins also act during genetic recombination in steps that include repairing mismatches in heteroduplex DNA, modulating meiotic crossover control, removing 3' non-homologous tails during double-strand break repair, and preventing recombination between divergent sequences. In this review we will, first, discuss roles for MMR proteins in repairing mismatches that occur during recombination, particularly during meiosis. We will also explore how studying this process has helped to refine models of double-strand break repair, and particularly to our understanding of gene conversion gradients. Second, we will examine the role of MMR proteins in repressing homeologous recombination, i.e. recombination between divergent sequences. We will also compare the requirements for MMR proteins in preventing homeologous recombination to the requirements for these proteins in mismatch repair.  相似文献   

11.
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9+ and rad9 mutants. Directed translocations were generated by selecting for His+ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-Δ5′ and trp1::his3-Δ3′::HOcs. Compared to RAD9+ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV- and X-ray-stimulated His+ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G2-M checkpoint by demonstrating that if rad9 mutants were arrested in G2 before irradiation, the numbers both of UV- and γ-ray-stimulated recombinants were reduced. The importance of G2 arrest in DNA damage-induced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.  相似文献   

12.
In order to analyze the roles of some repair genes in the processing of bleomycin-induced DNA damage and, especially, the interrelationships among the involved repair pathways, we investigated the potentially lethal effect of bleomycin on radiosensitive mutants of Saccharomyces cerevisiae defective in recombination, excision, and RAD6-dependent DNA repair. Using single, double, and triple rad mutants, we analyzed growth kinetics and survival curves as a function of bleomycin concentration. Our results indicate that genes belonging to the three epistasis groups interact in the repair of bleomycin-induced DNA damage to different degrees depending on the concentration of bleomycin. The most important mechanisms involved are recombination and postreplication repair. The initial action of a potentially inducible excision repair gene could provide intermediate substrates for the RAD6- and RAD52-dependent repair processes. Interaction between RAD6 and RAD52 genes was epistatic for low bleomycin concentrations. RAD3 and RAD52 genes act independently in processing DNA damage induced by high concentrations of bleomycin. The synergistic interaction observed at high concentrations in the triple mutant rad2-6 rad6-1 rad52-1 indicates partial independence of the involved repair pathways, with possible common substrates. On the basis of the present results, we propose a heuristic model of bleomycin-induced DNA damage repair.  相似文献   

13.
Mott C  Symington LS 《DNA Repair》2011,10(4):408-415
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.  相似文献   

14.
The rapid ubiquitination of chromatin surrounding DNA double-stranded breaks (DSB) drives the formation of large structures called ionizing radiation-induced foci (IRIF), comprising many DNA damage response (DDR) proteins. This process is regulated by RNF8 and RNF168 ubiquitin ligases and is thought to be necessary for DNA repair and activation of signaling pathways involved in regulating cell cycle checkpoints. Here we demonstrate that it is possible to interfere with ubiquitin-dependent recruitment of DDR factors by expressing proteins containing ubiquitin binding domains (UBDs) that bind to lysine 63-linked polyubiquitin chains. Expression of the E3 ubiquitin ligase RAD18 prevented chromatin spreading of 53BP1 at DSBs, and this phenomenon was dependent upon the integrity of the RAD18 UBD. An isolated RAD18 UBD interfered with 53BP1 chromatin spreading, as well as other important DDR mediators, including RAP80 and the BRCA1 tumor suppressor protein, consistent with the model that the RAD18 UBD is blocking access of proteins to ubiquitinated chromatin. Using the RAD18 UBD as a tool to impede localization of 53BP1 and BRCA1 to repair foci, we found that DDR signaling, DNA DSB repair, and radiosensitivity were unaffected. We did find that activated ATM (S1981P) and phosphorylated SMC1 (a specific target of ATM) were not detectable in DNA repair foci, in addition to upregulated homologous recombination repair, revealing 2 DDR responses that are dependent upon chromatin spreading of certain DDR factors at DSBs. These data demonstrate that select UBDs containing targeting motifs may be useful probes in determining the biological significance of protein–ubiquitin interactions.  相似文献   

15.
Stage-Specific Effects of X-Irradiation on Yeast Meiosis   总被引:7,自引:4,他引:3       下载免费PDF全文
L. W. Thorne  B. Byers 《Genetics》1993,134(1):29-42
Previous work has shown that cdc13 causes meiotic arrest of Saccharomyces cerevisiae following DNA replication by a RAD9-dependent mechanism. In the present work, we have further investigated the implicit effects of chromosomal lesions on progression through meiosis by exposing yeast cells to X-irradiation at various times during sporulation. We find that exposure of RAD9 cells to X-irradiation early in meiosis prevents sporulation, arresting the cells at a stage prior to premeiotic DNA replication. rad9 meiotic cells are much less responsive to X-irradiation damage, completing sporulation after treatment with doses sufficient to cause arrest of RAD9 strains. These findings thereby reveal a RAD9-dependent checkpoint function in meiosis that is distinct from the G(2) arrest previously shown to result from cdc13 dysfunction. Analysis of the spores that continued to be produced by either RAD9 or rad9 cultures that were X-irradiated in later stages of sporulation revealed most spores to be viable, even after exposure to radiation doses sufficient to kill most vegetative cells. This finding demonstrates that the lesions induced by X-irradiation at later times fail to trigger the checkpoint function revealed by cdc13 arrest and suggests that the lesions may be subject to repair by serving as intermediates in the recombination process. Strains mutant for chromosomal synapsis and recombination, and therefore defective in meiotic disjunction, were tested for evidence that X-ray-induced lesions might alleviate inviability by promoting recombination. Enhancement of spore viability when spo11 (but not hop1) diploids were X-irradiated during meiosis indicates that induced lesions may partially substitute for SPO11-dependent functions that are required for the initiation of recombination.  相似文献   

16.
17.
We have determined the kinetics of up-regulation of the homologous recombination gene RAD51, one of the genes induced following DNA damage in isogenic haploid DNA repair-deficient mutants of Saccharomyces cerevisiae, using treatment with the DNA crosslinking agent 8-methoxypsoralen. We show that RAD51 is up-regulated concomitantly, although independently, with a shift from the G1 cell cycle phase to G2/M arrest. This up-regulation is absent in homologous recombination repair-deficient mutants and increased in mutants deficient in nucleotide excision repair and polζ-dependent translesion synthesis. We demonstrate that the Rad53-dependent DNA damage signal transduction cascade is active in RAD51 non-inducing mutants. However, when independently eliminated, it too abolishes RAD51 up-regulation. We present a model in which RAD51 up-regulation requires two signals: one depending on the Rad53-dependent DNA damage signal transduction cascade and the other on homologous recombination repair.  相似文献   

18.
Goldfarb T  Alani E 《Genetics》2005,169(2):563-574
The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations that disrupt Sgs1p helicase activity, Msh2p-Msh6p mismatch recognition, and ATP binding and hydrolysis activities for their effect on preventing recombination between divergent DNA sequences (heteroduplex rejection) during SSA. The results support a model in which the Msh proteins act with Sgs1p to unwind DNA recombination intermediates containing mismatches. Importantly, msh2 mutants that displayed separation-of-function phenotypes with respect to nonhomologous tail removal during SSA and heteroduplex rejection were characterized. These studies suggest that nonhomologous tail removal is a separate function of Msh proteins that is likely to involve a distinct DNA binding activity. The involvement of Sgs1p in heteroduplex rejection but not nonhomologous tail removal further illustrates that subsets of MMR proteins collaborate with factors in different DNA repair pathways to maintain genome stability.  相似文献   

19.
G. T. Milne  T. Ho    D. T. Weaver 《Genetics》1995,139(3):1189-1199
RAD52 function is required for virtually all DNA double-strand break repair and recombination events in Saccharomyces cerevisiae. To gain greater insight into the mechanism of RAD52-mediated repair, we screened for genes that suppress partially active alleles of RAD52 when mutant or overexpressed. Described here is the isolation of a phenotypic null allele of SRS2 that suppressed multiple alleles of RAD52 (rad52B, rad52D, rad52-1 and KlRAD52) and RAD51 (KlRAD51) but failed to suppress either a rad52δ or a rad51δ. These results indicate that SRS2 antagonizes RAD51 and RAD52 function in recombinational repair. The mechanism of suppression of RAD52 alleles by srs2 is distinct from that which has been previously described for RAD51 overexpression, as both conditions were shown to act additively with respect to the rad52B allele. Furthermore, overexpression of either RAD52 or RAD51 enhanced the recombination-dependent sensitivity of an srs2δ RAD52 strain, suggesting that RAD52 and RAD51 positively influence recombinational repair mechanisms. Thus, RAD52-dependent recombinational repair is controlled both negatively and positively.  相似文献   

20.
DeMase D  Zeng L  Cera C  Fasullo M 《DNA Repair》2005,4(1):59-69
In response to DNA damage, the Saccharomyces cerevisiae securin Pds1 blocks anaphase promotion by inhibiting ESP1-dependent degradation of cohesins. PDS1 is positioned downstream of the MEC1- and RAD9-mediated DNA damage-induced signal transduction pathways. Because cohesins participate in postreplicative repair and the pds1 mutant is radiation sensitive, we identified DNA repair pathways that are PDS1-dependent. We compared the radiation sensitivities and recombination phenotypes of pds1, rad9, rad51 single and double mutants, and found that whereas pds1 rad9 double mutants were synergistically more radiation sensitive than single mutants, pds1 rad51 mutants were not. To determine the role of PDS1 in recombinational repair pathways, we measured spontaneous and DNA damage-associated sister chromatid exchanges (SCEs) after exposure to X rays, UV and methyl methanesulfonate (MMS) and after the initiation of an HO endonuclease-generated double-strand break (DSB). The rates of spontaneous SCE and frequencies of DNA damage-associated SCE were similar in wild type and pds1 strains, but the latter exhibited reduced viability after exposure to DNA damaging agents. To determine whether pds1 mutants were defective in other pathways for DSB repair, we measured both single-strand annealing (SSA) and non-homologous end joining (NHEJ) in pds1 mutants. We found that the pds1 mutant was defective in SSA but efficient at ligating cohesive ends present on a linear plasmid. We therefore suggest that checkpoint genes control different pathways for DSB repair, and PDS1 and RAD9 have different roles in recombinational repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号