首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The preferential conformations of the delta selective opioid peptides DPLPE (Tyr-c[D X Pen-Gly-Phe-Pen]) and DTLET (Tyr-D X Thr-Gly-Phe-Leu-Thr) were studied by 400 MHz 1H n.m.r. spectroscopy in DMSO-d6 solution. In neutral conditions, the weak NH temperature coefficients of the C-terminal residue (Pen5 or Thr6), associated with interproton NH-NH and alpha-NH NOE's (ROESY experiments), indicated large analogies between the backbone folding tendency of both the linear and cyclic peptides. Various gamma and/or beta turns may account for these experimental data. A similar orientation of the N-terminal tyrosine related to the folded backbones is observed for the two agonists, with a probable gamma turn around the amino acid in position 2. Finally, a short distance, about 10 A, between Tyr and Phe side chains and identical structural roles for threonyl and penicillamino residues are proposed for both peptides. These results suggest the occurrence of similar conformers in solution for the constrained peptide DPLPE and the flexible hexapeptide DTLET. Therefore, it may be hypothesized that the enhanced delta selectivity of DPLPE is related to a very large conformational expense of energy needed to interact with the mu opioid receptor, a feature not encountered in the case of DTLET. These findings might allow peptides to be designed retaining a high affinity for delta opioid receptors associated with a very low cross-reactivity with mu binding sites.  相似文献   

2.
Seventeen analogues of dermorphin were synthesized and bio-assayed to determine the influence of side chains of the individual amino acid residues forming the sequence of dermorphin on the biological activity of this opioid peptide. Syntheses were carried out using solid-phase procedure, and the analogues obtained were purified by gel filtration on Sephadex G-10. Biological activities determined in guinea pig ileum (GPI) and mouse vas deferens (MVD) tests showed that the N-terminal tetrapeptide is responsible for the activity of dermorphin. Substitutions in the C-terminal fragment, particularly in position 5, for other amino acid residues results in substantial differentiation towards mu and delta receptors.  相似文献   

3.
The previously described cyclic delta opioid receptor-selective tetrapeptide H-Tyr-D-Cys-Phe-D-Pen-OH (JOM-13) was modified at residue 3 by incorporation of both natural and unnatural amino acids with varying steric, electronic, and lipophilic properties. Effects on mu and delta opioid receptor binding affinities were evaluated by testing the compounds for displacement of radiolabeled receptor-selective ligands in a guinea pig brain receptor binding assay. Results obtained with the bulky aromatic 1-Nal3 and 2-Nal3 substitutions suggest that the shape of the receptor subsite with which the side chain of the internal aromatic residue interacts differs for delta and mu receptors. This subsite of either receptor can accommodate the transverse steric bulk of the 1-Nal3 side chain but only the delta receptor can readily accept the more elongated 2-Nal3 side chain. Several analogs with pi-excessive heteroaromatic side chains in residue 3 were examined. In general, these analogs display diminished binding to mu and delta receptors, consistent with previous findings for analogs with residue 3 substitutions of modified electronic character. Several analogs with alkyl side chains in residue 3 were also examined. While delta receptor binding affinity is severely diminished with Val3, Ile3, and Leu3 substitutions, Cha3 substitution is very well tolerated, indicating that, contrary to the widely held belief, an aromatic side chain in this portion of the ligand is not required for delta receptor binding. Where possible, comparison of results in this delta-selective tetrapeptide series with those reported for analogous modification in the cyclic delta-selective pentapeptide [D-Pen2, D-Pen5]enkephalin (DPDPE) and linear pentapeptide enkephalins reveals similar trends.  相似文献   

4.
(Phe5, delta Ala6)-LH-RH and des-Gly10(Phe5, delta Ala6)-LH-RH ethylamide, two analogues of luteinizing hormone-releasing hormone (LH-RH), have been synthesised using fragment condensation approach in solution phase with minimum protection of the side chains. The presence of dehydroalanine in peptide fragments was confirmed by 1H n.m.r. and chemical analysis. Both the analogues were found to be inactive in comparison to LH-RH, indicating that alpha,beta-dehydrogenation of alanine in 6th position is not tolerated and suggesting that flexibility at this position may be crucial for the retention of biological activity.  相似文献   

5.
The conformational and pharmacological properties that result from peptide bond reduction as well as the use of secondary amino acids in a series of cyclic peptides related to the mu opioid receptor selective antagonist D-Phe1-Cys2-Tyr3-D-Trp4-Orn5-Thr6-Pen7+ ++-Thr8-NH2 (IV), have been investigated. Peptide analogues that contain [CH2NH] and [CH2N] pseudo-peptide bonds (in primary and secondary amino acids, respectively) were synthesized on a solid support. Substitution of Tyr3 in IV by the cyclic, secondary amino acid 1,2,3,4-tetrahydroisoquinoline carboxylate (Tic) and of D-Trp4 with D-1,2,3,4-tetrahydro-beta-carboline(D-Tca4), gave peptides 4 and 1, respectively. Both analogues displayed reduced affinities for mu opioid receptors. Conformational analysis based on extensive NMR investigations demonstrated that the backbone conformations of 1 and 4 are similar to those of the potent and selective analogue D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 (I), while the conformational properties of the side chains of Tic3 (4) and D-Tca4 (1) resulted in topographical properties that were not well recognized by the mu opioid receptor. Peptide bond modifications were made including (Tyr3-psi[CH2NH]-D-Trp4), 3; (Tyr3-psi[CH2N]-D-Tca4), 2; and (Cys2-psi[CH2N]-Tic3), 6. These analogues showed decreases in their mu opioid receptor affinities relative to the parent compounds IV, 1, and 4, respectively. 1H NMR based conformational analysis in conjunction with receptor binding data led to the conclusion that the reduced peptide bonds in 2, 3, 5, and 6 do not contribute to the process of discrimination between mu and delta opioid receptors, and in spite of their different dynamic behaviors (relative to 1 and 4), they are still capable of attaining similar receptor bound conformations, possibly due to their increased flexibility.  相似文献   

6.
Formyl peptide chemotactic receptors affinity-labeled with N-formyl-Nle-Leu-Phe-Nle-[125I]iodo-Tyr-Lys (where Nle represents norleucine) and ethylene glycol bis(succinimidyl succinate) consist of two isoelectric forms with cell type differences in both apparent size and charge (neutrophils: 55-70 kDa, pI 5.8, and 6.2.; monocytes: 60-75 kDa, pI 5.6 and 6.0; differentiated HL-60 cells: 62-85 kDa, pI 5.6 and 6.0). Endo-beta-N-acetylglucosaminidase F (endo F) cleavage of N-linked oligosaccharides from formyl peptide receptor generates 40-50- and 33-kDa products that can be affinity-labeled. Whereas both pI forms of this receptor from neutrophils are cleaved by endo F to 33-kDa final products, this cleavage does not eliminate pI differences. Tunicamycin decreases expression of formyl peptide receptor on differentiating HL-60 and causes a dose-dependent decrease in size of the major product seen after affinity labeling (0.5 micrograms/ml: 38-48 kDa; 2 micrograms/ml: 32 kDa). Thus, the formyl peptide receptor polypeptide backbone from all three cell types contains at least two N-linked oligosaccharide side chains which contribute to the cell type differences in Mr and are not required for ligand binding. Papain treatment of intact cells generates a membrane-bound formyl peptide receptor fragment that can be affinity-labeled and is of similar size (29-31 kDa) in all three cell types. Endo F treatment of the affinity-labeled papain fragment of formyl peptide receptor does not alter its size, suggesting that this fragment does not contain the N-linked oligosaccharide cleaved by endo F from intact receptor. The results indicate that at least two N-linked oligosaccharide chains are located on the distal 1-3-kDa portion of the receptor polypeptide backbone.  相似文献   

7.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

8.
In an earlier study, we have demonstrated that by mutating five amino acid residues to those conserved in the opioid receptors, the OFQ receptor could be converted to a functional receptor that bound many opioid alkaloids with nanomolar affinities. Surprisingly, when the reciprocal mutations, Lys-214 --> Ala (TM5), Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val (TM6), and Ile-304 --> Thr (TM7), are introduced in the delta receptor, neither the individual mutations nor their various combinations significantly reduce the binding affinities of opioid alkaloids tested. However, these mutations cause profound alterations in the functional characteristics of the mutant receptors as measured in guanosine 5'-3-O-(thio)triphosphate binding assays. Some agonists become antagonists at some constructs as they lose their ability to activate them. Some alkaloid antagonists are transformed into agonists at other constructs, but their agonistic effects can still be blocked by the peptide antagonist TIPP. Even the delta inverse agonist 7-benzylidenenaltrexone becomes an agonist at the mutant containing both the Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val and Ile-304 --> Thr mutations. Thus, although the mutated residues are thought to be part of the binding pocket, they are critically involved in the control of the delta receptor activation process. These findings shed light on some of the structural bases of ligand efficacy. They are also compatible with the hypothesis that a ligand may achieve high affinity binding in several different ways, each having different effects on receptor activation.  相似文献   

9.
Mosberg HI 《Biopolymers》1999,51(6):426-439
The elaboration of a pharmacophore model for the delta opioid receptor selective ligand JOM-13 (Tyr-c[D-Cys-Phe-D-Pen]OH) and the parallel, independent development of a structural model of the delta receptor are summarized. Although the backbone conformation of JOM-13's tripeptide cycle is well defined, considerable conformational lability is evident in the Tyr(1) residue and in the Phe(3) side chain, key pharmacophore elements of the ligand. Replacement of these flexible features of the ligand by more conformationally restricted analogues and subsequent correlation of receptor binding and conformational properties allowed the number of possible binding conformations of JOM-13 to be reduced to two. Of these, one was chosen as more likely, based on its better superposition with other conformationally constrained delta receptor ligands. Our model of the delta opioid receptor, constructed using a general approach that we have developed for all rhodopsin-like G protein-coupled receptors, contains a large cavity within the transmembrane domain that displays excellent complementarity in both shape and polarity to JOM-13 and other delta ligands. This binding pocket, however, cannot accommodate the conformer of JOM-13 preferred from analysis of ligands, alone. Rather, only the "alternate" allowed conformer, identified from analysis of the ligands but "disfavored" because it does not permit simultaneous superposition of all pharmacophore elements of JOM-13 with other delta ligands, fits the binding site. These results argue against a simple view of a single, common fit to a receptor binding site and suggest, instead, that at least some binding site interactions of different ligands may differ.  相似文献   

10.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

11.
The beta sliding clamp encircles DNA and tethers DNA polymerase III holoenzyme to the template for high processivity. The clamp loader, gamma complex (gamma 3 delta delta'chi psi), assembles beta around DNA in an ATP-fueled reaction. The delta subunit of the clamp loader opens the beta ring and is referred to as the wrench; ATP modulates contact between beta and delta among other functions. Crystal structures of delta.beta and the gamma 3 delta delta' minimal clamp loader make predictions of the clamp loader mechanism, which are tested in this report by mutagenesis. The delta wrench contacts beta at two sites. One site is at the beta dimer interface, where delta appears to distort the interface by via a steric clash between a helix on delta and a loop near the beta interface. The energy for this steric clash is thought to derive from the other site of interaction, in which delta binds to a hydrophobic pocket in beta. The current study demonstrates that rather than a simple steric clash with beta, delta specifically contacts beta at this site, but not through amino acid side chains, and thus is presumably mediated by peptide backbone atoms. The results also imply that the interaction of delta at the hydrophobic site on beta contributes to destabilization of the beta dimer interface rather than acting solely as a grip of delta on beta. Within the gamma complex, delta' is proposed to prevent delta from binding to beta in the absence of ATP. This report demonstrates that one or more gamma subunits also contribute to this role. The results also indicate that delta' acts as a backboard upon which the gamma subunits push to attain the ATP induced change needed for the delta wrench to bind and open the beta ring.  相似文献   

12.
Eight cyclic heptapeptides related to the full sequence of deltorphin have been synthesized. The synthesis of linear peptides containing diamino acid residues in positions 2 and 4 was carried out on a 4-methylbenzhydrylamine resin. Depending on protection procedures, the N-protected peptide-resins or N-protected peptide amides with free amino groups in the side chains were obtained, which were subsequently treated with bis-(4-nitrophenyl)carbonate to form a urea unit. Opioid activities of the peptides were determined in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assays. Several compounds showed high delta opioid agonist potency and high selectivity for delta receptors. The results were compared with those obtained earlier for respective 1-4 deltorphin analogs. The conformations of these peptides have been studied using 2D-NMR in H2O/D2O and molecular dynamics. We observed that the backbone rings had well defined conformations, while the Tyr and Phe side chains and the C-terminal tail had significant conformational freedom. The bioassay data and conformational parameters of these peptides were compared with those of previously described, corresponding 1-4 deltorphin analogs. This comparison permitted an assessment of the role of the C-terminal peptide segment in defining the conformation and receptor interaction of the N-terminal portion and provided insight into the relationship between the putative bioactive conformations and bioactivity.  相似文献   

13.
We have mapped the residues in the sixth transmembrane domains (TMs 6) of the mu, delta, and kappa opioid receptors that are accessible in the binding-site crevices by the substituted cysteine accessibility method (SCAM). We previously showed that ligand binding to the C7.38S mutants of the mu and kappa receptors and the wild-type delta receptor was relatively insensitive to methanethiosulfonate ethylammonium (MTSEA), a positively charged sulfhydryl-specific reagent. These MTSEA-insensitive constructs were used as the templates, and 22 consecutive residues in TM6 (excluding C6.47) of each receptor were mutated to cysteine, 1 at a time. Most mutants retained binding affinities for [3H]diprenorphine, a nonselective opioid antagonist, similar to that of the template receptors. Treatment with MTSEA significantly inhibited [3H]diprenorphine binding to 11 of 22 mutants of the rat mu receptor and 9 of 22 mutants of the human delta receptor and 10 of 22 mutants of the human kappa receptor. Naloxone or diprenorphine protected all sensitive mutants, except the A6.42(287)C mu mutant. Thus, V6.40, F6.44, W6.48, I6.51, Y6.54, V6.55, I6.56, I6.57, K6.58, and A6.59 of the mu receptor; F6.44, I6.51, F6.54, V6.55, I6.56, V6.57, W6.58, T6.59, and L6.60 of the delta receptor; and F6.44, W6.48, I6.51, F6.54, I6.55, L6.56, V6.57, E6.58, A6.59, and L6.60 of the kappa receptor are on the water-accessible surface of the binding-site crevices. The accessibility patterns of residues in the TMs 6 of the mu, delta, and kappa opioid receptors are consistent with the notion that the TMs 6 are in alpha-helical conformations with a narrow strip of accessibility on the intracellular side of 6.54 and a wider area of accessibility on the extracellular side of 6.54, likely due to a proline kink at 6.50 that bends the helix in toward the binding pocket and enables considerable motion in this region. The wider exposure of residues 6.55-6.60 to the binding-site crevice, combined with the divergent amino acid sequences, is consistent with the inferred role of residues in this region in determining ligand binding selectivity. The conservation of the accessibility pattern on the cytoplasmic side of 6.54 suggests that this region may be important for receptor activation. This accessibility pattern is similar to that of the D2 dopamine receptor, the only other GPCR in which TM6 has been mapped by SCAM. That opioid receptors and the remotely related D2 dopamine receptor have similar accessibility patterns in TM6 suggest that these segments of GPCRs in the rhodopsin-like subfamily not only share secondary structure but also are packed similarly into the transmembrane bundle and thus have similar tertiary structure.  相似文献   

14.
The structural origins of the specificity of the neurophysin hormone-binding site for an aromatic residue in peptide position 2 were explored by analyzing the binding of a series of peptides in the context of the crystal structure of liganded neurophysin. A new modeling method for describing the van der Waals surface of binding sites assisted in the analysis. Particular attention was paid to the unusually large (5 kcal/mol) difference in binding free energy between Phe and Leu in position 2, a value representing more than three times the maximum expected based on hydrophobicity alone, and additionally remarkable since modeling indicated that the Leu side chain was readily accommodated by the binding pocket. Although evidence was obtained of a weak thermodynamic linkage between the binding interactions of the residue 2 side chain and of the peptide alpha-amino group, two factors are considered central. (1) The bound Leu side chain can establish only one-third of the van der Waals contacts available to a Phe side chain. (2) The bound Phe side chain appears to be additionally stabilized relative to Leu by more favorable dipole and induced dipole interactions with nonaromatic polar and sulfur ligands in the binding pocket, as evidenced by examination of its interactions in the pocket, analysis of the detailed energetics of transfer of Phe and Leu side chains from water to other phases, and comparison with thermodynamic and structural data for the binding of residue 1 side chains in this system. While such polar interactions of aromatic rings have been previously observed, the present results suggest their potential for significant thermodynamic contributions to protein structure and ligand recognition.  相似文献   

15.
In this article, we present a new technique for the rapid and precise docking of peptides to MHC class I and class II receptors. Our docking procedure consists of three steps: (1) peptide residues near the ends of the binding groove are docked by using an efficient pseudo-Brownian rigid body docking procedure followed by (2) loop closure of the intervening backbone structure by satisfaction of spatial constraints, and subsequently, (3) the refinement of the entire backbone and ligand interacting side chains and receptor side chains experiencing atomic clash at the MHC receptor-peptide interface. The method was tested by remodeling of 40 nonredundant complexes of at least 3.00 A resolution for which three-dimensional structural information is available and independently for docking peptides derived from 15 nonredundant complexes into a single template structure. In the first test, 33 out of 40 MHC class I and class II peptides and in the second test, 11 out of 15 MHC-peptide complexes were modeled with a Calpha RMSD < 1.00 A.  相似文献   

16.
We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions.  相似文献   

17.
D R Madden  J C Gorga  J L Strominger  D C Wiley 《Cell》1992,70(6):1035-1048
Cell surface complexes of class I MHC molecules and bound peptide antigens serve as specific recognition elements controlling the cytotoxic immune response. The 2.1 A structure of the human class I MHC molecule HLA-B27 provides a detailed composite image of a co-crystallized collection of HLA-B27-bound peptides, indicating that they share a common main-chain structure and length. It also permits direct visualization of the conservation of arginine as an "anchor" side chain at the second peptide position, which is bound in a potentially HLA-B27-specific pocket and may therefore have a role in the association of HLA-B27 with several diseases. Tight peptide binding to class I MHC molecules appears to result from the extensive contacts found at the ends of the cleft between peptide main-chain atoms and conserved MHC side chains, which also involve the peptide in stabilizing the three-dimensional fold of HLA-B27. The concentration of binding interactions at the peptide termini permits extensive sequence (and probably some length) variability in the center of the peptide, where it is exposed for T cell recognition.  相似文献   

18.
Classic major histocompatibility complex (MHC) proteins associate with antigen- and self-derived peptides in an allele-specific manner. Herein we present the crystal structure of the MHC class I protein H-2K(d) (K(d)) expressed by BALB/c mice in complex with an antigenic peptide derived from influenza A/PR/8/34 nucleoprotein (Flu, residues 147-155, TYQRTRALV). Analysis of our structure in conjunction with the sequences of naturally processed epitopes provides a comprehensive understanding of the dominant K(d) peptide-binding motif. We find that Flu residues Tyr(P2), Thr(P5), and Val(P9) are sequestered into the B, C, and F pockets of the K(d) groove, respectively. The shape and chemistry of the polymorphic B pocket make it an optimal binding site for the side chain of Tyr(P2) as the dominant anchoring residue of nonameric peptides. The non-polar F pocket limits the amino acid repertoire at P9 to hydrophobic residues such as Ile, Leu, or Val, whereas the C pocket restricts the size of the P5-anchoring side chain. We also show that Flu is accommodated in the complex through an unfavorable kink in the otherwise extended peptide backbone due to the presence of a prominent ridge in the K(d) groove. Surprisingly, this backbone conformation is strikingly similar to D(b)-presented peptides despite the fact that these proteins employ distinct motif-anchoring strategies. The results presented in this study provide a solid foundation for the understanding of K(d)-restricted antigen presentation and recognition events.  相似文献   

19.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

20.
Summary A series of tri-and tetrapeptides sharing the amino-terminal dipeptide unit Tyr-Tic, found in the high-affinity delta opioid receptor antagonist Tyr-Tic-Phe-Phe (TIPP), was prepared and evaluated in receptor binding assays to explore the role(s) of the phenylalanine residues in positions 3 and 4. It was found that aromaticity of residues 3 and 4 is not required for high affinity, a lipophilic side chain in either location being sufficient, as evidenced by the high delta receptor binding affinities observed for the tetrapeptide Tyr-Tic-Ala-Leu and the tripeptide Tyr-Tic-Leu. These results support the suggestion of Temussi et al. [Biochem. Biophys. Res. Commun., 198 (1994) 933] that the aromatic side chain of the Tic residue corresponds to the aromatic side chain found in residues 3 or 4 in other delta-selective peptide series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号