首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effects of continuous and intermittent feeding strategies on nitrogen removal and N2O emission from surface flow and subsurface flow constructed wetlands were evaluated in this study. Microcosm wetlands planted with Phragmites australis were constructed and operated with different feeding strategies for the 4-month experiment. Results showed the intermittent feeding strategy could enhance the removal of ammonium effectively in the subsurface flow constructed wetlands, although it had no significant effect for the surface flow wetlands. And the intermittent feeding mode could promote the emission of N2O. The amount of N2O-N emission from the subsurface flow constructed wetlands with intermittent feeding mode was about 5 times higher than that with continuous feeding strategy and the emission rate ranged from 0.09 ± 0.03 to 7.33 ± 1.49 mg/m2/h. Compared with the surface flow constructed wetlands, the N2O emission in the subsurface flow constructed wetlands was affected significantly by the intermittent feeding mode.  相似文献   

2.
3.
This paper aims to collect and analyse existing information on different filter media used for phosphorus (P) removal from wastewater in constructed wetlands. The most commonly used materials are categorized as natural materials (considered in 39 papers), industrial byproducts (25 papers) and man-made products (10 papers). A majority of studies on sorbents have been carried out in lab-scale systems as batch experiments, and only very few studies have highlighted results on full-scale systems. Among the great variety of filter media studied, most of materials had a pH level >7 and high Ca (CaO) content. The highest P-removal capacities were reported for various industrial byproducts (up to 420 g P kg−1 for some furnace slags), followed by natural materials (maximum 40 g P kg−1 for heated opoka) and man-made filter media (maximum 12 g P kg−1 for Filtralite). We found a significant positive Spearman Rank Order Correlation between the P retention and CaO and Ca content of filter materials (R2 = 0.51 and 0.43, respectively), whereas the relation of P retention to pH level was weak (R2 = 0.22) but significant. There is probably an optimal level of hydraulic loading rate at which the P removal is the highest. Additional important factors determining the applicability of filter materials in treatment wetlands such as saturation time, availability at a local level, content of heavy metals, and the recyclability of saturated filter media as fertilizer should be taken into consideration.  相似文献   

4.
Performance of a wastewater treatment system utilizing a sulfur-redox reaction of microbes was investigated using a pilot-scale reactor that was fed with actual sewage. The system consisted of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with a recirculation line. Consequently, the total CODCr (465 ± 147 mg L−1; total BOD of 207 ± 68 mg L−1) at the influent was reduced (70 ± 14 mg L−1; total BOD of 9 ± 2 mg L−1) at the DHS effluent under the conditions of an overall hydraulic retention time of 12 h, a recirculation ratio of 2, and a low-sewage temperature of 7.0 ± 2.8 °C. A microbial analysis revealed that sulfate-reducing bacteria contributed to the degradation of organic matter in the UASB reactor even in low temperatures. The utilized sulfur-redox reaction is applicable for low-strength wastewater treatment under low-temperature conditions.  相似文献   

5.
The purpose of this study is to investigate the nitrogen removal performance of the anaerobic ammonium oxidation (Anammox) process and the microbial community that enables the Anammox system to function well at ambient temperatures. A reactor with a novel spiral structure was used as the gas-solid separator. The reactor was fed with synthetic inorganic wastewater composed mainly of NH4+-N and NO2-N, and operated for 92 days. Stable nitrogen removal rates (NRR) of 16.3 and 17.5 kg-N m−3 d−1 were obtained at operating temperatures of 33 ± 1 and 23 ± 2 °C, respectively. To our knowledge, such a high NRR at ambient temperatures has not been reported previously. In addition, the experiments presented herein confirm that high influent NO2-N concentration of 460 mg L−1 did not noticeably inhibit the Anammox activity. Furthermore, the freshwater Anammox bacterium KU2, which was identified as the dominant bacterial species in the consortium by 16S rRNA gene analysis, is considered to be responsible for the stable nitrogen removal performance at ambient temperatures.  相似文献   

6.
Lin Y  Wang D  Li Q  Xiao M 《Bioresource technology》2011,102(4):3673-3678
This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2 °C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g−1 VSadded and the peak value of methane daily production was 0.5 m3/(m3 d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO3/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production.  相似文献   

7.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

8.
The treatment of reconstituted whey wastewater was performed in a 400 L digester at 20 °C, with an anaerobic digestion step, followed by a step of aerobic treatment at low oxygen concentration in the same digester. In a first set of 48 cycles, total cycle time (TC) of 2, 3 and 4 days were tested at varying organic loading rates (OLR). The COD removal reached 89 ± 4, 97 ± 3 and 98 ± 2% at TC of 2, 3 and 4 days and OLR of 0.56, 1.04 and 0.78 gCOD L−1 d−1, respectively. The activity of the biomass decreased for the methanogenic population, while increasing by 400% for the acidogens, demonstrating a displacement in the predominant trophic group in the biomass bed. A second set of 16 cycles was performed with higher soluble oxygen concentration in the bulk liquid (0.5 mg L−1) during the aerobic treatment at a TC of 2 days and an OLR of 1.55 gCOD L−1 d−1, with a soluble COD removal of 88 ± 3%. The biomass specific activities showed a compartmentalization of the trophic group with methanogenic activity maintained in the biomass bed and a high acidogenic activity in the suspended flocs.  相似文献   

9.
Three mesocosm wetlands (250 cm × 100 cm × 100 cm) with different wetland plants (Calamgrostis angustifolia, CA, Carex lasiocarpa, CL, and C. angustifolia/C. lasiocarpa mixture, AL, respectively) and hydrologic regimes were set to test migration and retention of exogenous dissolved iron ((NH4)2Fe(SO4)2of 40 mg Fe(II) L−1) in the Sanjiang Plain Wetland in northeast China. The experiment was designed as two stages: open migration period (OMP) for 1.5 d and close retention period (CRP) for 28.5 d. Based on the outflow Fe(II) concentration during the OMP, retention efficiencies (RE) and iron retention fluxes adjusted by area (RFad) in the three mesocosm wetlands were calculated, and the migration of iron were modeled using the first-order kinetic model. Outflow pH decreased gradually from a weak alkaline condition to a weak acid condition during the OMP, and then increased during the CRP, while outflow Eh and DO decreased during the experiment. The three mesocosm wetlands had considerable RE ranging from 75% to 98%, with the averaged RFad of 4.31 ± 0.17, 4.20 ± 0.16, and 4.37 ± 0.13 g m−2 h−1 for CA, CL, and AL, respectively. The reduction conditions in the mesocosm wetlands developed after 4 d or 12 d and the former retained iron during the OMP became mobile and discharged primarily in the form of Fe(III). The first-order kinetic model could simulate the outflow concentration of dissolved iron during the OMP (R2 = 0.91, 0.69, and 0.68 for CA, CL, and AL, respectively), while the outflow dissolved iron during the CMP was difficult to model because the changed pH and Eh conditions in the mesocosm wetlands cause the former precipitated iron to be mobile after several days.  相似文献   

10.
In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11 h (UASB reactor: 6 h and DHS reactor: 5 h) and phase (2) at overall HRT of 9.4 h (UASB reactor: 5.2 h and DHS reactor: 4.2 h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH4N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.  相似文献   

11.
Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8 l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (YG), specific biomass decay (b), maximum specific biomass growth rate (μmax), saturation constant (Ks) and critical retention time (Θc) were in the range of 0.990 g VSS/g CODremoved day, 0.024 day−1, 0.524 day−1, 203.433 g COD l−1 and 1.908 day, respectively.  相似文献   

12.
Won SG  Lau AK 《Bioresource technology》2011,102(13):6876-6883
In this study, a series of tests were conducted in a 6 L anaerobic sequencing batch reactor (ASBR) to investigate the effect of pH, hydraulic retention time (HRT) and organic loading rate on biohydrogen production at 28 °C. Sucrose was used as the main substrate to mimic carbohydrate-rich wastewater and inoculum was prepared from anaerobic digested sludge without pretreatment. The reactor was operated initially with nitrogen sparging to form anaerobic condition. Results showed that methanogens were effectively suppressed. The optimum pH value would vary depending on the HRT. Maximum hydrogen production rate and yield of 3.04 L H2/L reactor d and 2.16 mol H2/mol hexose respectively were achieved at pH 4.5, HRT 30 h, and OLR 11.0 kg/m3 d. Two relationships involving the propionic acid/acetic acid ratio and ethanol/acetic acid ratio were derived from the analysis of the metabolites of fermentation. Ethanol/acetic acid ratio of 1.25 was found to be a threshold value for higher hydrogen production.  相似文献   

13.
Kim HW  Nam JY  Shin HS 《Bioresource technology》2011,102(15):7272-7279
Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH4) production rate, CH4 yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2 m3CH4/m3system/d (0.2 m3CH4/kgVSadded) at organic loading rate of 6.1 gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization.  相似文献   

14.
Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near − 0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~ 1.85 μB) are avid DNA binders giving Kb values within 1.0 × 105 − 8.0 × 105 M− 1. Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50 = 8.3(± 1.0) μM) in visible light, while showing lower dark toxicity (IC50 = 17.2(± 1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50 = 30.0(± 1.0) μM in dark), while retaining its photocytotoxicity (IC50 = 8.0(± 1.0) μM).  相似文献   

15.
Anaerobic ammonium oxidation (ANAMMOX) may provide an effective nitrogen removal pathway for constructed wetlands with low C/N influent. In a study of domestic sewage treatment, anaerobic ammonium oxidation process was identified in the pilot-scale constructed wetland of a bio-ecological process which was composed of a bio-contact oxidation reactor and a horizontal subsurface flow constructed wetland (CW). To investigate the ANAMMOX establishment in the bio-ecological process, two new CWs (planted and unplanted) were developed to be a control for the pre-existing CW. Under operational conditions of DO 2-3 mg/l, HRT 3.5 h for the bio-contact oxidation reactor, HRT 3 days for CWs, and domestic sewage as influent, the process achieved more than 90% TN removal rate after the ANAMMOX was established. The ANAMMOX bacteria on the media of the constructed wetlands were analyzed by specific polymerase chain reaction (PCR) with ANAMMOX specific primer set AMX818F-AMX1066R. The result of the genetic sequencing showed that the PCR product was related to Candidatus B. anammoxidans (AF375994.1) with 98% sequence similarity. Copy numbers of 16S rRNA gene of ANAMMOX bacteria in the pre-existing CW, the new planted CW and new unplanted CW were 3.47 × 105, 3.02 × 105 and 1.30 × 105, respectively. These results demonstrated that the ANAMMOX process was successfully established and operated consistently in the constructed wetlands with a bio-contact oxidation reactor as a pretreatment, and that vegetation positively affected the growth and enrichment of ANAMMOX bacteria.  相似文献   

16.
Zhang Z  Li H  Zhu J  Weiping L  Xin X 《Bioresource technology》2011,102(7):4646-4653
The poor quality of effluent discharged by municipal wastewater treatment plants (WWTPs) is threatening the safety of water ecology. This study, which integrated a field survey, batch tests, and microbial community identification, was designed to improve the effectiveness of the enhanced biological phosphorus removal (EBPR) process for WWTPs. Over two-thirds of the investigated WWTPs could not achieve total P in effluent lower than 0.5 mg/L, mainly due to the high ratio of chemical oxygen demand to P (28.6-196.2) in the influent. The rates of anaerobic P release and aerobic P uptake for the activated sludge varied from 0.22 to 7.9 mg/g VSS/h and 0.43 to 8.11 mg/g VSS/h, respectively. The fraction of Accumulibacter (PAOs: polyphosphate accumulating organisms) was 4.8 ± 2.0% of the total biomass, while Competibacter (GAOs: glycogen-accumulating organisms) accounted for 4.8 ± 6.4%. The anaerobic P-release rate was found to be an effective indicator of EBPR. Four classifications of the principal components were identified to improve the EBPR effluent quality and sludge activity.  相似文献   

17.
The effect of electrodialytic treatment in terms of a current density, pH and Na2H2EDTA addition on the methanogenic activity of copper-amended anaerobic granular sludge taken from the UASB reactor from paper mill was evaluated. Moreover, the specific energy consumption and simplified operational and treatment costs were calculated. Addition of Na2H2EDTA (at pH 7.7) to copper-amended sludge resulted in the highest microbial activity (62 mg CH4-COD g VSS−1 day−1) suggesting that Na2H2EDTA decreased the toxic effects of copper on the methanogenic activity of the anaerobic granular sludge. The highest methane production (159 %) was also observed upon Na2H2EDTA addition and simultaneous electricity application (pH 7.7). The energy consumption during the treatment was 560, 840, 1400 and 1680 kW h m−3 at current densities of 0.23, 0.34, 0.57 and 0.69 mA cm−2, respectively. This corresponded to a treatment costs in terms of electricity expenditure from 39.2 to 117.6 € per cubic meter of sludge.  相似文献   

18.
This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO3) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9 ± 0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78 ± 0.05 mol H2/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9 ± 0.1 L/Lreactor/d and 0.61 ± 0.04 mol H2/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H2/L cheese whey and 1.9 L of H2/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20d and produced approximately 1 L CH4/d, corresponding to a yield of 6.7 L CH4/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process.  相似文献   

19.
《Ecological Engineering》2005,24(3):185-198
In 2001, to foster the practical development of constructed wetlands (CWs) used for domestic wastewater treatment in Turkey, vertical subsurface flow constructed wetlands (30 m2 of each) were implemented on the campus of the METU, Ankara, Turkey. The main objective of the research was to quantify the effect of different filter media on the treatment performance of vertical flow wetlands in the prevailing climate of Ankara. Thus, a gravel-filled wetland and a blast furnace granulated iron slag-filled wetland were operated identically with primarily treated domestic wastewater (3 m3 d−1) at a hydraulic loading rate of 0.100 m d−1, intermittently. Both of the wetland cells were planted with Phragmites australis. According to the first year results, average removal efficiencies for the slag and gravel wetland cells were as follows: total suspended solids (TSS) (63% and 59%), chemical oxygen demand (COD) (47% and 44%), NH4+–N (88% and 53%), total nitrogen (TN) (44% and 39%), PO43−-P (44% and 1%) and total phosphorus (TP) (45% and 4%). The treatment performances of the slag-filled wetland were better than that of the gravel-filled wetland in terms of removal of phosphorus and production of nitrate. Since this study was a pioneer for implementation of subsurface constructed wetlands in Turkey using local sources, it has proved that this eco-technology could also be used effectively for water quality enhancement in Turkey.  相似文献   

20.
An anaerobic digestion technique was applied to textile dye wastewater aiming at the colour and COD removal. Pet bottles of 5 L capacity were used as reactor which contains methanogenic sludge of half a liter capacity which was used for the treatment of combined synthetic textile dye and starch wastewater at different mixing ratios of 20:80, 30:70, 40:60, 50:50 and 60:40 with initial COD concentrations as 3520, 3440, 3360, 3264 and 3144 mg L−1, respectively. The reactor was maintained at room temperature (30 ± 3 °C) with initial pH of 7. The maximum COD and colour removal were 81.0% and 87.3% at an optimum mixing ratio of 30:70 of textile dye and starch wastewaters. Both Monod’s and Haldane’s models were adopted in this study. The kinetic constants of cell growth under Haldane’s model were satisfactory when compared to Monod’s model. The kinetic constants obtained by Haldane’s model were found to be in the range of μmax = 0.037-0.146 h−1, Ks = 651.04-1372.88 mg L−1 and Ki = 5681.81-18727.59 mg L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号