首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Physiological novelties are often studied at macro‐evolutionary scales such that their micro‐evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C4 and non‐C4 genotypes, with some populations using laterally acquired C4‐adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C4 and non‐C4 A. semialata individuals spanning the species’ range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C4‐related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations.  相似文献   

2.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

3.
C4 photosynthesis is thought to be an adaptation to warm environments, involving complex changes in the expression of genes governing photosynthesis, intermediary metabolism, and leaf anatomy and histology. Such complexity should be difficult to evolve, yet the pathway has arisen multiple times in the history of the flowering plants and at least four times in the grass family alone. We have used immunolocalization techniques to compare photosynthetic gene expression across all four origins, to determine which genetic changes occur in parallel and which are unique to a particular lineage. The only gene expression patterns common to all origins of the pathway are up-regulation of PEP carboxylase and down-regulation of RuBisCO in mesophyll cells. Both NAD-malic enzyme and NADP-malic enzyme are expressed in bundle sheaths. Expression patterns of light-harvesting chlorophyll a/b binding proteins and pyruvate orthophosphate dikinase appear to be lineage specific, and may be localized to bundle sheaths or to mesophyll or expressed throughout the photosynthetic tissue of the leaf. We suggest that future studies of parallel origin of the C4 pathway concentrate on regulation of the two carboxylases, as well as the increased density of vascular tissue, which is the only histological characteristic common to all origins of the pathway.  相似文献   

4.
C4 photosynthesis is a complex trait resulting from a series of anatomical and biochemical modifications to the ancestral C3 pathway. It is thought to evolve in a stepwise manner, creating intermediates with different combinations of C4‐like components. Determining the adaptive value of these components is key to understanding how C4 photosynthesis can gradually assemble through natural selection. Here, we decompose the photosynthetic phenotypes of numerous individuals of the grass Alloteropsis semialata, the only species known to include both C3 and C4 genotypes. Analyses of δ13C, physiology and leaf anatomy demonstrate for the first time the existence of physiological C3–C4 intermediate individuals in the species. Based on previous phylogenetic analyses, the C3–C4 individuals are not hybrids between the C3 and C4 genotypes analysed, but instead belong to a distinct genetic lineage, and might have given rise to C4 descendants. C3 A. semialata, present in colder climates, likely represents a reversal from a C3–C4 intermediate state, indicating that, unlike C4 photosynthesis, evolution of the C3–C4 phenotype is not irreversible.  相似文献   

5.
We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce Ne, leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q  相似文献   

6.
7.
The grass Alloteropsis semialata (R.Br.) Hitchcock is uniquein that both Kranz and non-Kranz leaf anatomy has been reportedin this species. The present study investigates Kranz formsof A. semialata collected from a single ecological niche. Theseplants exhibit morphological and anatomical differences withrespect to leaf area, stomatal size and stomatal distribution.Carbon dioxide and water exchange measurements in the two formsshow the expected pattern of higher photosynthetic rate andhigher water utilization efficiency associated with Kranz anatomy.No intermediate physiological response or anatomical form wasobserved in this sample. Alloteropsis semialata (R.Br.) Hitchcock, C3 photosynthetic, C4 photosynthesis, water utilization, leaf anatomy, Kranz anatomy  相似文献   

8.
Background and Aims: The grass Alloteropsis semialata is the only plant species withboth C3 and C4 subspecies. It therefore offers excellent potentialas a model system for investigating the genetics, physiologyand ecological significance of the C4 photosynthetic pathway.Here, a molecular phylogeny of the genus Alloteropsis is constructedto: (a) confirm the close relationship between the C3 and C4subspecies of A. semialata; and (b) infer evolutionary relationshipsbetween species within the Alloteropsis genus. Methods: The chloroplast gene ndhF was sequenced from 12 individuals,representing both subspecies of A. semialata and all four ofthe other species in the genus. ndhF sequences were added tothose previously sequenced from the Panicoideae, and used toconstruct a phylogenetic tree. Key Results: The phylogeny confirms that the two subspecies of A. semialataare among the most recently diverging lineages of C3 and C4taxa currently recognized within the Panicoideae. Furthermore,the position of the C3 subspecies of A. semialata within theAlloteropsis genus is consistent with the hypothesis that itsphysiology represents a reversion from C4 photosynthesis. Thedata point to a similar evolutionary event in the Panicum stenodesP.caricoidesP. mertensii clade. The Alloteropsis genusis monophyletic and occurs in a clade with remarkable diversityof photosynthetic biochemistry and leaf anatomy. Conclusions: These results confirm the utility of A. semialata as a modelsystem for investigating C3 and C4 physiology, and provide moleculardata that are consistent with reversions from C4 to C3 photosynthesisin two separate clades. It is suggested that further phylogeneticand functional investigations of the Alloteropsis genus andclosely related taxa are likely to shed new light on the mechanismsand intermediate stages underlying photosynthetic pathway evolution.  相似文献   

9.
10.
At high temperatures and relatively low CO2 concentrations, plants can most efficiently fix carbon to form carbohydrates through C4 photosynthesis rather than through the ancestral and more widespread C3 pathway. Because most C4 plants are grasses, studies of the origin of C4 are intimately tied to studies of the origin of the grasses. We present here a phylogeny of the grass family, based on nuclear and chloroplast genes, and calibrated with six fossils. We find that the earliest origins of C4 likely occurred about 32 million years ago (Ma) in the Oligocene, coinciding with a reduction in global CO2 levels. After the initial appearance of C4 species, photosynthetic pathway changed at least 15 more times; we estimate nine total origins of C4 from C3 ancestors, at least two changes of C4 subtype, and five reversals to C3. We find a cluster of C4 to C3 reversals in the Early Miocene correlating with a drop in global temperatures, and a subsequent cluster of C4 origins in the Mid‐Miocene, correlating with the rise in temperature at the Mid‐Miocene climatic optimum. In the process of dating the origins of C4, we were also able to provide estimated times for other major events in grass evolution. We find that the common ancestor of the grasses (the crown node) originated in the upper Cretaceous. The common ancestor of maize and rice lived at 52 ± 8 Ma.  相似文献   

11.
Summary Leaf blades of 42 grasses (Poaceae) have been examined ultrastructurally for the occurrence of a suberized lamella in walls of parenchymatous bundle sheaths and PCR (= Kranz) sheaths in both large and small vascular bundles. The sample includes species from a range of major grass taxa, and represents all photosynthetic types found in the grasses. Three grasses with unusual C4 leaf anatomy were also included:Alloteropsis semialata, Aristida biglandulosa, Arundinella nepalensis. The presence of a suberized lamella in PCR cell walls was perfectly correlated with photosynthetic type. All PEP-carboxykinase type and NADP-malic enzyme type C4 species examined possessed a suberized lamella in outer tangential and radial walls, but with variable presence in inner tangential walls. PCR cells of bothAlloteropsis semialata andArundinella nepalensis also possessed a suberized lamella. A lamella was totally absent from parenchymatous bundle sheath cells of the C3 species examined (5 spp.) and ofPanicum milioides, a C3-C4 intermediate. It was also absent from PCR cells of NAD-malic enzyme type C4 species (14 spp.) andAristida biglandulosa. The results are discussed in relation to the leakage of CO2 from PCR cells, and to differences between C4 types in 13C values, chloroplast position in PCR cells, and other anatomical characteristics.  相似文献   

12.
The genus Flaveria consists of 23 species with significant variation in photosynthetic physiologies. We tested whether photosynthetic pathway variation in seven co-existing Flaveria species corresponds to geographic distributions or physiological performance in C3, C4, and intermediate species growing under natural conditions in south-central Mexico. We found that Flaveria pringlei (C3) was the most widely distributed species with multiple growth habits. Numerous populations of Flaveria kochiana (C4), a recently described species with a previously unknown distribution, were located in the Mixtec region of Oaxaca. Flaveria cronquistii (C3) and Flaveria ramosissima (C3-C4) were only located in the Tehuacán Valley region while Flaveria trinervia (C4) was widely distributed. Only one population of Flaveria angustifolia (C3-C4) and Flaveria vaginata (C4-like) were located near Izúcar de Matamoros. Midday leaf water potential differed significantly between Flaveria species, but did not vary according to growth habit or photosynthetic pathway. The quantum yield of photosystem II did not vary between species, despite large differences in leaf nitrogen content, leaf shape, plant size and life histories. We did not find a direct relationship between increasing C4 cycle characteristics and physiological performance in the Flaveria populations examined. Furthermore, C3 species were not found at higher elevation than C4 species as expected. Our observations indicate that life history traits and disturbance regime may be the primary controllers of Flaveria distributions in south-central Mexico.  相似文献   

13.
Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non‐C4 genotypes, the grass Alloteropsis semialata. While non‐C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches.  相似文献   

14.
Alloteropsis semialata (R.Br.) Hitchcock is a widely distributedgrass species known to show marked morphological, anatomicaland physiological variation. An unusual feature of this grassis that it shows both C3, and C4 photosynthetic pathways withthe respective anatomy related to these pathways in one speciesand within a single environment. This study investigates ultrastructuraldifferences between C3 and C4 forms of A. semialata, and showsdistribution of chlorenchyma in the two forms, at light microscopelevel. Quantitative assessment shows marked differences in mesophylland Kranz sheath cells with regard to size and organelle content;also in distribution of starch grains, lipid droplets and organellesin the mesophyll cells of both forms. These differences arediscussed in relation to the C3/C4 syndrome. Measurements were made using a Digiplan electronic planimeteron transmission electron micrographs of mature leaves sectionedtransversely at mid-lamina, and on drawings of leaf sectionsshowing the distribution of chlorenchymatous tissue. Alloteropsis semialata(R.Br.) Hitchcock, leaf structure, chlorenchyma, ultrastructure, C3-photosynthesis, C4-photosynthesis  相似文献   

15.
16.
17.

Background and Aims

Cleomaceae is one of 19 angiosperm families in which C4 photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C4 in genus Cleome.

Methods

Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC).

Key Results

Three species with C4-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C4 photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C4 cycle (compared with the C3–C4 intermediate C. paradoxa and the C3 species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells.

Conclusions

NAD-malic enzyme-type C4 photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with semi-terete leaflets in the African species C. angustifolia. The leaf morphology of C. angustifolia, which is similar to that of the sister, C3–C4 intermediate African species C. paradoxa, suggests adaptation of this lineage to arid environments, which is supported by biogeographical information.  相似文献   

18.
Mauremys sensu lato was divided into Mauremys, Chinemys, Ocadia, and Annamemys based on earlier research on morphology. Phylogenetic research on this group has been controversial because of disagreements regarding taxonomy, and the historical speciation is still poorly understood. In this study, 32 individuals of eight species that are widely distributed in Eurasia were collected. The complete mitochondrial (mt) sequences of 14 individuals of eight species were sequenced. Phylogenetic relationships, interspecific divergence times, and ancestral area reconstructions were explored using mt genome data (10,854 bp). Subsequent interspecific gene flow level assessment was performed using five unlinked polymorphic microsatellite loci. The Bayesian and maximum likelihood analyses revealed a paraphyletic relationship among four old genera (Mauremys, Annamemys, Chinemys, and Ocadia) and suggested the four old genera should be merged into the genus (Mauremys). Ancestral area reconstruction and divergence time estimation suggested Southeast Asia may be the area of origin for the common ancestral species of this genus and genetic drift may have played a decisive role in species divergence due to the isolated event of a glacial age. However, M. japonica may have been speciated due to the creation of the island of Japan. The detection of extensive gene flow suggested no vicariance occurred between Asia and Southeast Asia. Inconsistent results between gene flow assessment and phylogenetic analysis revealed the hybrid origin of M. mutica (Southeast Asian). Here ancestral area reconstruction and interspecific gene flow level assessment were first used to explore species origins and evolution of Mauremys sensu lato, which provided new insights on this genus.  相似文献   

19.
Identifying how organismal attributes and environmental change affect lineage diversification is essential to our understanding of biodiversity. With the largest phylogeny yet compiled for grasses, we present an example of a key physiological innovation that promoted high diversification rates. C4 photosynthesis, a complex suite of traits that improves photosynthetic efficiency under conditions of drought, high temperatures, and low atmospheric CO2, has evolved repeatedly in one lineage of grasses and was consistently associated with elevated diversification rates. In most cases there was a significant lag time between the origin of the pathway and subsequent radiations, suggesting that the ‘C4 effect’ is complex and derives from the interplay of the C4 syndrome with other factors. We also identified comparable radiations occurring during the same time period in C3 Pooid grasses, a diverse, cold-adapted grassland lineage that has never evolved C4 photosynthesis. The mid to late Miocene was an especially important period of both C3 and C4 grass diversification, coincident with the global development of extensive, open biomes in both warm and cool climates. As is likely true for most “key innovations”, the C4 effect is context dependent and only relevant within a particular organismal background and when particular ecological opportunities became available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号