首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R-cells are mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I receptor (IGF-IR) genes. Because R-cells do not express the IGF-IR, they are ideal for studying the biological effects of the insulin receptor (IR), independently from any contribution by the IGF-IR. By stably transfecting R-cells with constructs expressing the IR, we show here the IR can protect cells from apoptosis induced by anoikis or by okadaic acid. The IR, however, is not as efficient as the IGF-IR in protecting mouse embryo fibroblasts from apoptosis, even when IRS-1, one of its major substrates, is over-expressed. In addition, the protection by the IGF-IR is resistant to inhibitors of phosphatidylinositol 3-kinase (PI 3-ki), while the anti-apoptotic effect of the IR is sensitive. These experiments suggest that the IGF-IR uses an alternative anti-apoptotic pathway, not shared with the IR, which is PI3-ki-independent.  相似文献   

2.
3.
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.  相似文献   

4.
Mouse embryo cells expressing a wild-type number of insulin-like growth factor I receptors (IGF-IR) (W cells) can be transformed either by simian virus 40 large T antigen (SV40 T) or by overexpressed insulin receptor substrate 1 (IRS-1), singly transfected. Neither SV40 T antigen nor IRS-1, individually, can transform mouse embryo cells with a targeted disruption of the IGF-IR genes (R- cells). However, cotransfection of SV40 T antigen and IRS-1 does transform R- cells. In this study, using different antibodies and different cell lines, we found that SV40 T antigen and IRS-1 are coprecipitated from cell lysates in a specific fashion, regardless of whether the lysates are immunoprecipitated with an antibody to SV40 T antigen or an antibody to IRS-1. The same antibody to SV40 T antigen, however, fails to coprecipitate another substrate of IGF-IR, the transforming protein Shc, and two other signal-transducing molecules, Grb2 and Sos. Finally, an SV40 T antigen lacking the amino-terminal 250 amino acids fails to coprecipitate IRS-1 and also fails to transform R- cells overexpressing mouse IRS-1. These experiments indicate that IRS-1 associates with SV40 T antigen and that this association plays a critical role in the combined ability of these proteins to transform R- cells. This finding is discussed in light of the crucial role of the IGF-IR in the establishment and maintenance of the transformed phenotype.  相似文献   

5.
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to regulate a variety of cellular processes including cell proliferation, cell survival, cell differentiation, and cell transformation. IRS-1 and Shc, substrates of the IGF-IR, are known to mediate IGF-IR signaling pathways such as those of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), which are believed to play important roles in some of the IGF-IR-dependent biological functions. We used the cytoplasmic domain of IGF-IR in a yeast two-hybrid interaction trap to identify IGF-IR-interacting molecules that may potentially mediate IGF-IR-regulated functions. We identified RACK1, a WD repeat family member and a Gbeta homologue, and demonstrated that RACK1 interacts with the IGF-IR but not with the closely related insulin receptor (IR). In several types of mammalian cells, RACK1 interacted with IGF-IR, protein kinase C, and beta1 integrin in response to IGF-I and phorbol 12-myristate 13-acetate stimulation. Whereas most of RACK1 resides in the cytoskeletal compartment of the cytoplasm, transformation of fibroblasts and epithelial cells by v-Src, oncogenic IR or oncogenic IGF-IR, but not by Ros or Ras, resulted in a significantly increased association of RACK1 with the membrane. We examined the role of RACK1 in IGF-IR-mediated functions by stably overexpressing RACK1 in NIH 3T3 cells that expressed an elevated level of IGF-IR. RACK1 overexpression resulted in reduced IGF-I-induced cell growth in both anchorage-dependent and anchorage-independent conditions. Overexpression of RACK1 also led to enhanced cell spreading, increased stress fibers, and increased focal adhesions, which were accompanied by increased tyrosine phosphorylation of focal adhesion kinase and paxillin. While IGF-I-induced activation of IRS-1, Shc, PI3K, and MAPK pathways was unaffected, IGF-I-inducible beta1 integrin-associated kinase activity and association of Crk with p130(CAS) were significantly inhibited by RACK1 overexpression. In RACK1-overexpressing cells, delayed cell cycle progression in G(1) or G(1)/S was correlated with retinoblastoma protein hypophophorylation, increased levels of p21(Cip1/WAF1) and p27(Kip1), and reduced IGF-I-inducible Cdk2 activity. Reduction of RACK1 protein expression by antisense oligonucleotides prevented cell spreading and suppressed IGF-I-dependent monolayer growth. Our data suggest that RACK1 is a novel IGF-IR signaling molecule that functions as a positive mediator of cell spreading and contact with extracellular matrix, possibly through a novel IGF-IR signaling pathway involving integrin and focal adhesion signaling molecules.  相似文献   

6.
After an initial burst of cell proliferation, the type 1 insulin-like growth factor receptor (IGF-IR) induces granulocytic differentiation of 32D IGF-IR cells, an interleukin-3-dependent murine hemopoietic cell line devoid of insulin receptor substrate-1 (IRS-1). The combined expression of the IGF-IR and IRS-1 (32D IGF-IR/IRS-1 cells) inhibits IGF-I-mediated differentiation, and causes malignant transformation of 32D cells. Because of the role of IRS-1 in changing the fate of 32D IGF-IR cells from differentiation (and subsequent cell death) to malignant transformation, we have looked for differences in IGF-IR signaling between 32D IGF-IR and 32D IGF-IR/IRS-1 cells. In this report, we have focused on p70(S6K), which is activated by the IRS-1 pathway. We find that the ectopic expression of IRS-1 and the inhibition of differentiation correlated with a sustained activation of p70(S6K) and an increase in cell size. Phosphorylation in vivo of threonine 389 and, to a lesser extent, of threonine 421/serine 424 of p70(S6K) seemed to be a requirement for inhibition of differentiation. A role of IRS-1 and p70(S6K) in the alternative between transformation or differentiation of 32D IGF-IR cells was confirmed by findings that inhibition of p70(S6K) activation or IRS-1 signaling, by rapamycin or okadaic acid, induced differentiation of 32D IGF-IR/IRS-1 cells. We have also found that the expression of myeloperoxidase mRNA (a marker of differentiation, which sharply increases in 32D IGF-IR cells), does not increase in 32D IGF-IR/IRS-1 cells, suggesting that the expression of IRS-1 in 32D IGF-IR cells causes the extinction of the differentiation program initiated by the IGF-IR, while leaving intact its proliferation program.  相似文献   

7.
Insulin receptor substrate (IRS) proteins are tyrosine phosphorylated and mediate multiple signals during activation of the receptors for insulin, insulin-like growth factor 1 (IGF-1), and various cytokines. In order to distinguish common and unique functions of IRS-1, IRS-2, and IRS-4, we expressed them individually in 32D myeloid progenitor cells containing the human insulin receptor (32D(IR)). Insulin promoted the association of Grb-2 with IRS-1 and IRS-4, whereas IRS-2 weakly bound Grb-2; consequently, IRS-1 and IRS-4 enhanced insulin-stimulated mitogen-activated protein kinase activity. During insulin stimulation, IRS-1 and IRS-2 strongly bound p85alpha/beta, which activated phosphatidylinositol (PI) 3-kinase, protein kinase B (PKB)/Akt, and p70(s6k), and promoted the phosphorylation of BAD. IRS-4 also promoted the activation of PKB/Akt and BAD phosphorylation during insulin stimulation; however, it weakly bound or activated p85-associated PI 3-kinase and failed to mediate the activation of p70(s6k). Insulin strongly inhibited apoptosis of interleukin-3 (IL-3)-deprived 32D(IR) cells expressing IRS-1 or IRS-2 but failed to inhibit apoptosis of cells expressing IRS-4. Consequently, 32D(IR) cells expressing IRS-4 proliferated slowly during insulin stimulation. Thus, the activation of PKB/Akt and BAD phosphorylation might not be sufficient to inhibit the apoptosis of IL-3-deprived 32D(IR) cells unless p85-associated PI 3-kinase or p70(s6k) are strongly activated.  相似文献   

8.
Activated Ras, but not Raf, causes transformation of RIE-1 rat intestinal epithelial cells, demonstrating the importance of Raf-independent effector signaling in mediating Ras transformation. To further assess the contribution of Raf-dependent and Raf-independent function in oncogenic Ras transformation, we evaluated the mechanism by which oncogenic Ras blocks suspension-induced apoptosis, or anoikis, of RIE-1 cells. We determined that oncogenic versions of H-, K-, and N-Ras, as well as the Ras-related proteins TC21 and R-Ras, protected RIE-1 cells from anoikis. Surprisingly, our analyses of Ras effector domain mutants or constitutively activated effectors indicated that activation of Raf-1, phosphatidylinositol 3-kinase (PI3K), or RalGDS alone is not sufficient to promote Ras inhibition of anoikis. Treatment of Ras-transformed cells with the U0126 MEK inhibitor caused partial reversion to an anoikis-sensitive state, indicating that extracellular signal-regulated kinase activation contributes to inhibition of anoikis. Unexpectedly, oncogenic Ras failed to activate Akt, and treatment of Ras-transformed RIE-1 cells with the LY294002 PI3K inhibitor did not affect anoikis resistance or growth in soft agar. Thus, while important for Ras transformation of fibroblasts, PI3K may not be involved in Ras transformation of RIE-1 cells. Finally, inhibition of epidermal growth factor receptor kinase activity did not overcome Ras inhibition of anoikis, indicating that this autocrine loop essential for transformation is not involved in anoikis protection. We conclude that a PI3K- and RalGEF-independent Ras effector(s) likely cooperates with Raf to confer anoikis resistance upon RIE-1 cells, thus underscoring the complex nature by which Ras transforms cells.  相似文献   

9.
10.
Available evidence suggests that insulin-like growth factor I receptor (IGF-IR) expression leads to increased cellular radioresistance. The most direct explanation of these findings predicts that IGF-IR is the source of survival signals in resistant cells. Mutational analysis revealed that protein truncated at amino acid 1245 in the C-terminus retained the ability of IGF-IR to confer radioresistance whereas point mutations at both Tyr-1250 and Tyr-1251 abrogated this effect using IGF-IR-deficient mouse embryo fibroblasts (R-) as a recipient. In cells expressing the latter mutant receptors, both phosphatidylinositol-3(') kinase (PI3-K) and mitogen-activated protein kinase (MAPK) signaling pathways remained intact, and addition of exogenous IGF-I could not change the radiosensitivity of these cells. Further analysis indicated that the abrogation of radioresistance required the presence of His-1293 and Lys-1294. These results suggest a novel regulatory role of the C-terminus of IGF-IR in mediating cellular radioresistance that may be independent of survival signals transmitted through this receptor.  相似文献   

11.
The insulin-like growth factor I receptor (IGF-IR) has the ability to confer clonogenic radioresistance following ionizing irradiation. We attempted to determine the downstream pathways involved in IGF-IR-mediated radioresistance and used mouse embryo fibroblasts deficient in endogenous IGF-IR (R-) as recipients for a number of mutant IGF-IRs. Mutational analysis revealed that the tyrosine at residue 950 (Tyr-950) of IGF-IR, as well as the C-terminal domain, are required for radioresistance and that both domains must be mutated to abrogate the phenotype. Furthermore, the contribution of downstream pathways was analyzed by combining the use of wild-type or Tyr-950 and C-terminal mutants with specific inhibitors of phosphatidylinositol 3'-kinase (PI3-K) or mitogen-activated protein extracellular signal-regulated kinase (ERK) kinase (MEK). Radioresistance could be induced by IGF-IR as long as the ability of the receptor to stimulate the MEK/ERK pathway was retained. This was confirmed by the expression of constitutively active MEK in R- cells. The ability to stimulate the PI3-K pathway alone was not sufficient, but PI3-K activation coupled with MEK/ERK pathway-independent signals from the C terminus was able to induce radioresistance. Taken together, these results indicate that the IGF-IR-mediated radioresistant signaling mechanism progresses through redundant downstream pathways.  相似文献   

12.
Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.  相似文献   

13.
Insulin receptor substrate (IRS) proteins are major docking molecules for the type I insulin like growth factor (IGF) receptor (IGF-IR) and mediate their effects on downstream signaling molecules. In this report, we investigated IRS-1 regulation during apoptosis in human neuroblastoma SH-EP cells. Treatment of SH-EP cells with mannitol or okadaic acid (OA) induces apoptosis with the typical characteristics of anoikis. Mannitol treatment results in IRS-1 degradation with concomitant appearance of smaller fragments, likely representing caspase cleavage products. In contrast OA-induced IRS-1 degradation is accompanied by a mobility shift in IRS-1, suggesting IRS-1 serine/threonine phosphorylation. Mannitol-induced, but not OA-induced, degradation is blocked by IGF-I. Pretreatment of the cells with caspase or proteasome inhibitors also partially blocks mannitol-induced IRS-1 degradation. These results suggest two independent pathways are involved in IRS-1 degradation; one pathway is dependent on caspase activation and is blocked by IGF-I, while a second pathway is caspase-independent and IGF-I-insensitive.  相似文献   

14.
The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.  相似文献   

15.
BACKGROUND: Insulin receptor substrate proteins (IRS) mediate various effects of insulin, including regulation of glucose homeostasis, cell growth and survival. To understand the underlying mechanisms explaining the effects of the Src-related tyrosine kinase GTK on beta-cell proliferation and survival, insulin-signalling pathways involving IRS-1 and IRS-2 were studied in islet cells and RINm5F cells overexpressing wild-type and two different mutants of the SRC-related tyrosine kinase GTK. MATERIALS AND METHODS: Islets isolated from transgenic mice and RINm5F cells overexpressing wild-type and mutant GTK were analysed for IRS-1, IRS-2, SHB, AKT and ERK phosphorylation/activity by Western blot analysis. RESULTS: RINm5F cells expressing the kinase active mutant Y504F-GTK and islet cells from GTK(Y504F) -transgenic mice exhibited reduced insulin-induced tyrosine phosphorylation of IRS-1 and IRS-2. In RINm5F cells, the diminished IRS-phosphorylation was accompanied by a reduced insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3K), AKT and Extracellular Signal-Regulated Kinase, partly due to an increased basal activity. In addition, increased tyrosine phosphorylation of the SHB SH2 domain-adaptor protein and its association with IRS-2, IRS-1 and focal adhesion kinase was observed in these cells. RINm5F cells overexpressing wild-type GTK also exhibited reduced activation of IRS-2, PI3K and AKT, whereas cells expressing a GTK mutant with lower kinase activity (GTK(Y394F)) exhibited insignificantly altered responses to insulin compared to the mock transfected cells. Moreover, GTK was shown to associate with and phosphorylate SHB in transiently transfected COS-7 cells, indicating that SHB is a specific substrate for GTK. CONCLUSIONS: The results suggest that GTK signals via SHB to modulate insulin-stimulated pathways in beta cells and this may explain previous results showing an increased beta-cell mass in GTK-transgenic mice.  相似文献   

16.
Stratified squamous epithelia express the alphavbeta5 integrin, but in squamous cell carcinomas (SCCs) there is down-regulation of alphavbeta5 and up-regulation of alphavbeta6. To investigate the significance of this finding, we transduced an alphav-negative human SCC line with retroviral vectors encoding alphav integrins. alphavbeta5-expressing cells underwent suspension-induced apoptosis (anoikis), whereas alphav-negative cells and cells expressing alphavbeta6 did not. Resistance to anoikis correlated with PKB/Akt activation in suspension, but not with changes in PTEN or p110alpha PI3 kinase levels. Anoikis was induced in parental and alphavbeta6-expressing cells by inhibiting PI3 kinase. Conversely, activation of Akt or inhibition of caspases in alphavbeta5-expressing cells suppressed anoikis. Caspase inhibition resulted in increased phosphoAkt, placing caspase activation upstream of decreased Akt activation. Anoikis required the cytoplasmic domain of beta5 and was independent of the death receptor pathway. These results suggest that down-regulation of alphavbeta5 through up-regulation of alphavbeta6 may protect SCCs from anoikis by activating an Akt survival signal.  相似文献   

17.
Because seaweed extracts have recently been found to have antioxidant and anti-tumor activities, we analyzed a hot-water-soluble polysaccharide (PS) of the marine alga Capsosiphon fulvescens for its potential as a functional foodstuff by determining its effects on cell growth and DNA synthesis. MTS assays showed that the C. fulvescens PS (Cf-PS) significantly inhibited the proliferation of cultured human cancer cells in a dose-dependent manner. Cf-PS-treated AGS cells exhibited a marked increase in caspase-3 activation and a decrease in Bcl-2 expression. In addition, phosphorylation of insulin-like growth factor-I receptor (IGF-IR) was decreased in Cf-PS-treated AGS cells as compared to non-treated control cells, which is consistent with PI3-kinase (PI3K)/Akt activation. Cf-PS also decreased IGF-I-stimulated recruitment of p85 to IGF-IR and IRS-1. These results indicate that Cf-PS inhibits cell proliferation and induces apoptosis by inhibiting IGF-IR signaling and the PI3K/Akt pathway.  相似文献   

18.
The Upstream Binding Factor 1 (UBF1) is a nucleolar protein that participates in the regulation of RNA polymerase I activity and ribosomal RNA (rRNA) synthesis. In 32D myeloid cells expressing the type 1 insulin-like growth factor receptor (IGF-IR), the UBF1 protein (but not its mRNA) is down regulated when the cells are shifted from Interleukin-3 (IL-3) to IGF-1. Ectopic expression of insulin receptor substrate-1 (IRS-1) in these cells inhibits the down-regulation of UBF1. We now show that the stability of UBF1 in 32D-derived cells requires also a signal from the extracellular regulated kinases (ERKs). When ERKs signaling is defective, as in cells over-expressing the insulin receptor (InR) or selected mutants of the IGF-1R, UBF1 is down-regulated, even in the presence of IRS-1. The down-regulation is corrected by the expression of an activated Ha-ras, which stimulates ERKs activity. Mutations at threonines 117 and 201 of UBF1, known to be phosphorylated by ERKs, cause its down-regulation. However, when IRS-2, instead of IRS-1, is ectopically expressed in 32D InR cells, ERKs phosphorylation is increased and UBF is stabilized. Taken together, these results indicate that in 32D-derived myeloid cells expressing either the IGF-IR or the InR, UBF1 levels are regulated by signaling from both IRS proteins and ERKs.  相似文献   

19.
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.  相似文献   

20.
Mouse embryo cells with a targeted disruption of the insulin-like growth factor I receptor (IGF-IR) genes (R- cells) are refractory to transformation by the simian virus 40 large T antigen and/or an activated and overexpressed Ras, both of which readily transform cells from wild-type littermate embryos and other 3T3-like cells. R- cells are also refractory to transformation induced by overexpressed epidermal growth factor receptor and platelet-derived growth factor receptor beta. Since the platelet-derived growth factor receptor beta is required for transformation by bovine papillomavirus, we inquired whether the IGF-IR was also required for transformation by bovine papillomavirus E5 oncoprotein. We show here that R- cells are refractory to transformation by E5; reintroduction into R- cells of a human IGF-IR restores the susceptibility to transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号