首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid bacteria in meat fermentation   总被引:11,自引:0,他引:11  
Abstract The main fermented meat products are fermented sausages in which lactic acid bacteria (LAB) are the essential agents of the ripening process. During indigenous fermentations Lactobacillus curvatus and L. sake are the dominating LAB. Their application as starter organisms ensures the dominance of the starter during the whole ripening process. The suppression of the competing fortuitous LAB depends on the quality of the raw materials and on technological factors. The physiological properties of lactic starters do not suffice to ensure a sensory quality which can be found in traditionally produced dry fermented sausages. Additional activities required are present in micrococci and yeasts which, therefore, are further components of starter culture preparations. Some strains of meat-borne lactobacilli exhibit the essential activities like nitrate reductase, nitrite reductase, catalase, lipase, and protease, respectively. To create the optimal starter cultures composed of lactobacilli, these activities have to be studied and optimized in strains of high competitiveness in the fermenting substrate.  相似文献   

2.
Non-dairy lactic fermentations: the cereal world*   总被引:14,自引:0,他引:14  
Sourdough is the foremost cereal fermentation performed in a variety of technologies with almost any cereal. The lactobacilli studied most intensely include Lactobacillus sanfranciscensis, L. reuteri and L. pontis isolated from traditional and modern rye and wheat fermentations. Molecular biology tools are available for their rapid identification and monitoring throughout a process. The currently available insight on their metabolism can be used to explain their prevalence in this environment and their interactions. Key genes of the sugar degradation pathway were cloned and characterised from L. sanfranciscensis. In addition some strains were found to have special properties including the production of antagonistic compounds or the adhesion to human intestinal cells.  相似文献   

3.
Molecular taxonomy of Lactobacillus phages   总被引:4,自引:0,他引:4  
Forty-eight strains of lactobacilli used as starter strains in the dairy industry were examined for lysogeny after treatment with mitomycin C. Two strains of L. delbrueckii subsp. bulgaricus were able to produce active phages. These temperate phages as well as 4 virulent phages isolated during abnormal fermentations were compared to a previously characterized phage mv4 which is temperate. All these phages were shown to be partially homologous by DNA-DNA hybridization. Genes that code for viral proteins seem to be well conserved since 2 major virion polypeptides of 18 (or 19) kD and 34 kD could be detected in the protein composition of each phage. Immunoblotting studies of the 7 phages using serum raised against phage mv4 confirmed that the proteins of the different phages were related. All these phages can be classified in the previously constituted group a, which now comprises 4 temperate and 15 virulent phages. These results show that some virulent phages appearing during abnormal fermentations and some temperate phages isolated by appearing during abnormal fermentations and some temperate phages isolated by induction of starter strains can be closely related genetically. Five virulent phages of L. helveticus were also compared according to their restriction pattern and their DNA homology. They were shown to be related to one another, but unrelated to phages of other lactic acid bacteria species.  相似文献   

4.
The genus Lactobacillus has been widely used in food industry as starter or adjunct culture due to its probiotic features. Its biotechnological features improve the spectrum of uses of lactobacilli, which can affect its applicability directly. In this sense, this literature review gathers information and discusses the biotechnological potential of technological/probiotic lactobacilli aiming to improve food quality and human health. The primary and secondary metabolism generates specific substances, such as organic acids, carbon dioxide, hydrogen peroxide, diacetyl, fatty acids, and bacteriocins, which are determinant due to their probiotic potential, antimicrobial activity, and the development of new food flavors. In order to become industrially and commercially attractive, it is necessary develop a large-scale process with lower production costs.  相似文献   

5.
《Biotechnology advances》2017,35(4):419-442
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.  相似文献   

6.
Using heme as an energy boost for lactic acid bacteria   总被引:1,自引:0,他引:1  
Lactic acid bacteria (LAB) are a phylogenetically diverse group named for their main attribute in food fermentations, that is, production of lactic acid. However, several LAB are genetically equipped for aerobic respiration metabolism when provided with exogenous sources of heme (and menaquinones for some species). Respiration metabolism is energetically favorable and leads to less oxidative and acid stress during growth. As a consequence, the growth and survival of several LAB can be dramatically improved under respiration-permissive conditions. Respiration metabolism already has industrial applications for the production of dairy starter cultures. In view of the growth and survival advantages conferred by respiration, and the availability of heme and menaquinones in natural environments, we recommend that respiration be accepted as a part of the natural lifestyle of numerous LAB.  相似文献   

7.
The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals.  相似文献   

8.
Lactic acid bacteria such as Lactococcus lactis are the microorganisms of choice for performing metabolic engineering in relation to food fermentation. These bacteria are used extensively in food fermentations, they have a simple and therefore controllable metabolism and the molecular genetics of these food bacteria is well-developed. There have been recent successes in metabolic engineering in these lactic acid bacteria, including examples of changes in both primary metabolism (diacetyl and alanine) and secondary metabolism (exopolysaccharides and flavour).  相似文献   

9.
Folk yoghurt kills Helicobacter pylori   总被引:2,自引:0,他引:2  
AIMS: To evaluate a traditional yoghurt used as folk medicine for its ability to kill Helicobacter pylori in vitro. METHODS AND RESULTS: Micro-organisms from the yoghurt were identified and tested in different food substrates for their effects on H. pylori in a co-culture well system. Two yeasts and several strains of lactobacilli were isolated from the yoghurt, and both the yeast and the lactobacilli independently showed cidal activity against H. pylori. The microbes from the original yoghurt also retained their cidal effect when grown in corn meal and soy milk. CONCLUSIONS: The yeast and lactobacilli found in this yoghurt form a hardy symbiotic culture. The organisms secrete soluble factors capable of killing H. pylori, and these factors may include some organic by-products of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: These yoghurt-derived food preparations could become simple and inexpensive therapies to suppress H. pylori infections in endemic countries.  相似文献   

10.
Lactic acid bacteria play an important role in many food and feed fermentations. In recent years major advances have been made in unravelling the genetic and molecular basis of significant industrial traits of lactic acid bacteria. Bacteriophages which can infect and destroy lactic acid bacteria pose a particularly serious threat to dairy fermentations that can result in serious economic losses. Consequently, these organisms and the mechanisms by which they interact with their hosts have received much research attention. This paper reviews some of the key discoveries over the years that have led us to our current understanding of bacteriophages themselves and the means by which their disruptive influence may be minimized.  相似文献   

11.

Background  

Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish.  相似文献   

12.
Functional petit-suisse cheese: measure of the prebiotic effect   总被引:1,自引:0,他引:1  
Cardarelli HR  Saad SM  Gibson GR  Vulevic J 《Anaerobe》2007,13(5-6):200-207
Prebiotics and probiotics are increasingly being used to produce potentially synbiotic foods, particularly through dairy products as vehicles. It is well known that both ingredients may offer benefits to improve the host health. This research aimed to evaluate the prebiotic potential of novel petit-suisse cheeses using an in vitro fermentation model. Five petit-suisse cheese formulations combining candidate prebiotics (inulin, oligofructose, honey) and probiotics (Lactobacillus acidophilus, Bifidobacterium lactis) were tested in vitro using sterile, stirred, batch culture fermentations with human faecal slurry. Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and production of lactate and short chain fatty acids. Fastest fermentation and high lactic acid production, promoting increased growth rates of bifidobacteria and lactobacilli, were achieved with addition of prebiotics to a probiotic cheese (made using starter+probiotics). Addition of probiotic strains to control cheese (made using just a starter culture) also resulted in high lactic acid production. Highest MPE values were obtained with addition of prebiotics to a probiotic cheese, followed by addition of prebiotics and/or probiotics to a control cheese. Under the in vitro conditions used, cheese made with the combination of different prebiotics and probiotics resulted in the most promising functional petit-suisse cheese. The study allowed comparison of potentially functional petit-suisse cheeses and screening of preferred synbiotic potential for future market use.  相似文献   

13.
AIMS: It was the aim of our work to investigate glutamine deamidation by lactic acid bacteria isolated from cereal fermentations and to elucidate the ecological and technological relevance in baking of the conversion of glutamine to glutamate. METHODS AND RESULTS: Lactobacillus sanfranciscensis and Lact. reuteri were found to display glutaminase activity. The addition of glutamine to modified Man, Rogosa and Sharp medium increased the cell yields of Lact. sanfranciscensis, as well as the production of lactic and acetic acid. The final pH; however, was increased in the glutamine-containing medium. The addition of 47 mmol kg(-1) glutamate to chemically acidified doughs significantly changed the bread flavour. In sourdoughs with enhanced proteolytic activity, strain-dependent production of 27-120 mmol glutamate per kilogram sourdough was observed. CONCLUSIONS: Lactobacillus sanfranciscensis and Lact. reuteri converted glutamine into glutamate; this conversion improves the acid tolerance of lactobacilli and significantly influences wheat bread flavour. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper illustrates the complex interaction of sourdough-lactobacilli with their environment: the flour provides substrates for metabolic activities that enable the lactobacilli to reach higher cell counts, and the produced metabolite may be one of the reasons why the flavour of fermented breads is different to the flavour of chemically acidified breads.  相似文献   

14.
Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production.  相似文献   

15.
Aims:  Investigating the influence of an added starter culture on the properties of fermented liquid pig feed.
Methods and Results:  Diets of cereal grain blended with wet wheat distillers' grain that were either not inoculated (WWDG), inoculated with a silage starter culture at start (WWDGsc1) or at start and at each backslopping (replacement of 80% the content with fresh mixture, simulating feed outtake, WWDGsc5) were fermented for 5 days, followed by 5 days of daily backslopping. Numbers of undesirable micro-organisms (enterobacteria, moulds) were reduced in all fermentations; particularly enterobacteria in the starter culture inoculated diets. Lactobacillus plantarum present in the starter culture became dominant in diets WWDGsc1 and WWDGsc5. However, Lactobacillus panis that was dominating WWDG was also abundant in WWDGsc1 and WWDGsc5. Yeast populations were not influenced by the starter culture, with Pichia fermentans dominating all fermentations. All diets had similar chemical characteristics with the exception of a significant increase of all tested organic acids in WWDGsc5.
Conclusions:  The addition of a starter culture influences the bacterial population in fermented liquid feed, but there is also a strong impact of the flora already present in the feed ingredients. The yeast population is not influenced by adding a lactic acid bacteria (LAB) starter culture. A consortium of LAB and yeast strains adapted to the fermentation should be used as starter culture.
Significance and Impact of the Study:  The results suggest that it is possible to influence the current unpredictable and spontaneous process of feed fermentation when appropriate starter cultures are used. For this purpose, LAB and yeasts with desirable characteristics should be isolated.  相似文献   

16.
Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.  相似文献   

17.
Phytate is a potent inhibitor of mineral absorption in humans occurring in plant-based food. Application of lactobacilli that produce phytate-degrading enzymes (phytases) to reduce phytate is an interesting yet a not much explored sector of research. Therefore, phytate dephosphorylation by Lactobacillus plantarum MTCC 1325 was evaluated. Cells at stationary phase showed phytase activity which was maximal at 24 h of growth. Glucose concentration and the type of phosphorous source in the media modulated the enzyme activity. Fermentation of cereal and/or legume flours with the strain resulted in phytate reduction with the highest in sorghum (73%) and the lowest in horse gram (34%). Further, the strain showed tolerance to acid, bile, and simulated gastrointestinal fluid. Significant phytase activity in the presence of simulated gastrointestinal fluids along with the ability to produce phytases post-exposure to simulated gastrointestinal fluids is of interest. To the best of our knowledge, this is the first report on the effect of simulated gastrointestinal fluid on cell-associated phytases of lactobacilli. The results of the investigation indicate that L. plantarum MTCC 1325 could be used as a starter in cereal-legume fermentation and as potential probiotics to achieve phytate hydrolysis in food matrices and also in gastrointestinal tract.  相似文献   

18.
Abstract: Lactic acid bacteria (LAB) are the most important bacteria used in food fermentations. Apart from general demands for starter cultures from the view of safety, technological effectiveness and economics, numerous specific aspects have to be considered when selecting strains for the different food fermentations. Therefore selection criteria for LAB depend on the type and the desired characteristics of the final product, the desired metabolic activities, the characteristics of the raw materials and the applied technology. Special selection criteria for LAB for use in the fermentation of sausages and vegetables as well as for the malolactic fermentation in wine are discussed.  相似文献   

19.
Lactobacillus plantarum is used in a wide range of agricultural and food fermentations. In this paper we report the introduction of alpha-amylase into the organism from Bacillus amyloliquefaciens on a stable recombinant plasmid. The genetically manipulated organism grew on MRSB medium supplemented with starch and it may be a prototype for the development of lactobacilli able to use an increased range of substrates in commercial fermentations.  相似文献   

20.
Cheddar cheese was manufactured with either Lactobacillus salivarius NFBC 310, NFBC 321, or NFBC 348 or L. paracasei NFBC 338 or NFBC 364 as the dairy starter adjunct. These five strains had previously been isolated from the human small intestine and have been characterized extensively with respect to their probiotic potential. Enumeration of these strains in mature Cheddar cheese, however, was complicated by the presence of high numbers (>107 CFU/g of cheese) of nonstarter lactic acid bacteria, principally composed of lactobacilli which proliferate as the cheese ripens. Attempts to differentiate the adjunct lactobacilli from the nonstarter lactobacilli based on bile tolerance and growth temperature were unsuccessful. In contrast, the randomly amplified polymorphic DNA method allowed the generation of discrete DNA fingerprints for each strain which were clearly distinguishable from those generated from the natural flora of the cheeses. Using this approach, it was found that both L. paracasei strains grew and sustained high viability in cheese during ripening, while each of the L. salivarius species declined over the ripening period. These data demonstrate that Cheddar cheese can be an effective vehicle for delivery of some probiotic organisms to the consumer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号