首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   21篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   11篇
  2014年   9篇
  2013年   11篇
  2012年   31篇
  2011年   25篇
  2010年   4篇
  2009年   15篇
  2008年   14篇
  2007年   17篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   7篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
1.
Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance.Bacteria are commonly employed for the purification of municipal and industrial wastewater but until now, established water treatment technologies have not taken advantage of photosynthetic bacteria (i.e. cyanobacteria). The ability of cyanobacterial cultures to grow at high cell densities with minimal nutritional requirements (e.g. sunlight, carbon dioxide, and minerals) opens up many future avenues for sustainable water treatment applications.Water security is an urgent global issue, especially because many regions of the world are experiencing, or are predicted to experience, water shortage conditions: More than one in six people globally are water stressed, in that they do not have access to safe drinking water (United Nations, 2006). Ninety-seven percent of the Earth’s water is in the oceans; consequently, there are many efforts to develop efficient methods for converting saltwater into freshwater. Various processes using synthetic membranes, such as reverse osmosis, are successfully used for large-scale desalination. However, the high energy consumption of these technologies has limited their application predominantly to countries with both relatively limited freshwater resources and high availability of energy, for example, in the form of oil reserves.The development of an innovative, low-energy biological desalination process, using biological membranes of cyanobacteria, would thus be both attractive and pertinent. The core of the proposed biodesalination process (Fig. 1) is a low-salt biological reservoir within seawater that can serve as an ion exchanger. Its development can be separated into several complementary steps. The first step comprises the selection of a cyanobacterial strain that can be grown to high cell densities in seawater with minimal requirement for energy sources other than those that are naturally available. The environmental conditions during growth can be manipulated to enhance natural extrusion of sodium (Na+) by cyanobacteria. In the second step, cyanobacterial ion transport mechanisms must be manipulated to generate cells in which sodium export is replaced with intracellular sodium accumulation. This will involve inhibition of endogenous Na+ export and expression of synthetic molecular units that facilitate light-driven sodium flux into the cells. A robust control system built from biological switches will be required to achieve precisely timed expression of the salt-accumulating molecular units. The third step consists of engineering efficient separation of the cyanobacterial cells from the desalinated water, using knowledge of physicochemical properties of the cell surface and their natural ability to produce extracellular polymeric substances (EPSs), which aid cell separation while preserving cell integrity. The fourth step integrates the first three steps into a manageable and scalable engineering process. The fifth and final step assesses potential risks and public acceptance issues linked to the new technology.Open in a separate windowFigure 1.Proposed usage of cyanobacterial cultures for water treatment. A, Hypothetical water treatment station. Situated in basins next to the water source, sun-powered cell cultures remove unwanted elements from the water. The clean water is separated from the cells for human uses. The produced biomass is available for other industries. The proposed biodesalination process is based on the following steps. B, Photoautotrophic cells divide to generate high-density cultures. C, The combined cell volume is low in salt as a result of transport proteins in the cell membrane that export sodium using photosynthetically generated energy. D, Through environmental and genetic manipulation, salt export is inhibited and replaced with transport modules that accumulate salt inside the cells. This process is again fueled by light energy. E, Manipulation of cell surface properties separates the salt-enriched cells from the desalinated water.In this review, we outline the state of knowledge and available technology for each of the steps, as well as summarize the current knowledge gaps and technical limitations in employing a large-scale water treatment process using cyanobacteria. Before discussing these issues, we provide some background information on the usage of cyanobacteria in biotechnology and the impact of sodium on cellular functions of cyanobacteria. The example of biodesalination provides a good vehicle to discuss the suitability of photosynthetic bacteria for water treatment more generally. The issues addressed in this review are relevant for a wide range of biotechnological applications of cyanobacteria, including bioremediation and biodegradation as well as the generation of biofuels, natural medicines, or cosmetics.  相似文献   
2.
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta . Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo . Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells.  相似文献   
3.
The Kv-like (potassium voltage-dependent) K+ channels at the plasma membrane, including the inward-rectifying KAT1 K+ channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K+ homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K+ channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.Plant cells utilize the potassium ion (K+) to maintain hydrostatic (turgor) pressure, to drive irreversible cell expansion for growth, and to facilitate reversible changes in cell volume during stomatal movements. Potassium uptake and its circulation throughout the plant relies both on high-affinity, H+-coupled K+ transport (Quintero and Blatt, 1997; Rubio et al., 2008) and on K+ channels to facilitate K+ ion transfer across cell membranes. Uptake via K+ channels is thought to be responsible for roughly 50% of the total K+ content of the plant under most field conditions (Spalding et al., 1999; Rubio et al., 2008; Amtmann and Blatt, 2009). K+ channels confer on the membranes of virtually every tissue distinct K+ conductances and regulatory characteristics (Véry and Sentenac, 2003; Dreyer and Blatt, 2009). Their characteristics are thus of interest for engineering directed to manipulating K+ flux in many aspects of plant growth and cellular homeostasis. The control of K+ channel gating has been identified as the most promising target for the genetic engineering of stomatal responsiveness (Lawson and Blatt, 2014; Wang et al., 2014a), based on the recent development of quantitative systems models of guard cell transport and metabolism (Chen et al., 2012b; Hills et al., 2012; Wang et al., 2012). By contrast, modifying the expression and, most likely, the population of native K+ channels at the membrane was found to have no substantial effect on stomatal physiology (Wang et al., 2014b).The Kv-like K+ channels of the plant plasma membrane (Pilot et al., 2003; Dreyer and Blatt, 2009) share a number of structural features with the Kv superfamily of K+ channels characterized in animals and Drosophila melanogaster (Papazian et al., 1987; Pongs et al., 1988). The functional channels assemble from four homologous subunits and surround a central transmembrane pore that forms the permeation pathway (Daram et al., 1997). Each subunit comprises six transmembrane α-helices, designated S1 to S6, and both N and C termini are situated on the cytosolic side of the membrane (Uozumi et al., 1998). The pore or P loop between the S5 and S6 α-helices incorporates a short α-helical stretch and the highly conserved amino acid sequence TxGYGD, which forms a selectivity filter for K+ (Uozumi et al., 1995; Becker et al., 1996; Nakamura et al., 1997). The carbonyl oxygen atoms of these residues in all four K+ channel subunits face inward to form coordination sites for K+ ions between them (Doyle et al., 1998; Jiang et al., 2003; Kuo et al., 2003; Long et al., 2005) and a multiple-ion pore (Thiel and Blatt, 1991) such that K+ ions pass through the selectivity filter as if in free solution. The plant channels are also sensitive to a class of neurotoxins that exhibit high specificity in binding around the mouth of the channel pore (Obermeyer et al., 1994).These K+ channels also share a common gating mechanism. Within each subunit, the first four α-helices form a quasiindependent unit, the voltage sensor domain (VSD), with the S4 α-helix incorporating positively charged (Arg or Lys) residues regularly positioned across the lipid bilayer and transmembrane electric field. Voltage displaces the S4 α-helix within the membrane and couples rotation of the S5 and S6 α-helices lining the pore, thereby opening or closing the channel (Sigworth, 2003; Dreyer and Blatt, 2009). For outward-rectifying channels, such as the mammalian Kv1.2 and the D. melanogaster Shaker K+ channels, an inside-positive electric field drives the positively charged, S4 α-helix outward (the up position), which draws on the S4-S5 linker to open the pore. This simple expedient of a lever and string secures current flow in one direction by favoring opening at positive, but not negative, voltages. This same model applies to the Arabidopsis (Arabidopsis thaliana) Kv-like K+ channels, including outward rectifiers that exhibit sensitivity to external K+ concentration (Blatt, 1988; Blatt and Gradmann, 1997; Johansson et al., 2006), and it serves equally in the gating of inward-rectifying K+ channels such as KAT1, which gates open at negative voltages (Dreyer and Blatt, 2009).Studies of KAT1 gating (Latorre et al., 2003; Lai et al., 2005) have indicated that the S4 α-helix of the channel most likely undergoes very similar conformational changes with voltage as those of the mammalian and Shaker K+ channels. These findings conform with the present understanding of the evolution of VSD structure (Palovcak et al., 2014) and the view of a common functional dynamic to its molecular design. It is likely, therefore, that a similar electrostatic network occurs in KAT1 to stabilize the VSD. Crucially, however, experimental evidence in support of such a network has yet to surface. Electrostatic countercharges and the hydration of amino acid side chains between the α-helices within the VSDs of mammalian and Shaker K+ channel models are important for the latch-like stabilization of the so-called down and up states of these channels (Tao et al., 2010; Pless et al., 2011). Nonetheless, some studies (Gajdanowicz et al., 2009; Riedelsberger et al., 2010) have pointed to subtle differences in the structure of KAT1 that relate to the VSD.We have explored the electrostatic network of the KAT1 VSD through site-directed mutagenesis to manipulate the voltage dependence of KAT1, combining these studies with molecular dynamic simulations previously shown to accommodate the plant VSDs and their hydration during gating transitions (Gajdanowicz et al., 2009; Garcia-Mata et al., 2010). We report here that gating of KAT1 is sensitive to manipulations affecting a set of electrostatic charge transfer centers. These findings conform in large measure to the mammalian and Shaker models. However, virtually all manipulations affecting a highly conserved, central Phe favor the up state of the VSD and the closed KAT1 channel, whereas mutations affecting the electrostatic networks on either side of this Phe favor the down state of the VSD and the open channel. These and additional observations suggest that hydration within the VSD is a major determinant of KAT1 gating.  相似文献   
4.
Indicators are helpful tools for land use management; especially in the context of sustainable urban development, they are indispensable information bases for decision making, communication, and awareness rising. For Santiago de Chile, like many other large and dynamic cities, a high complexity of geographical conditions, social and land use pattern, diverging interests, and a high velocity of development are characteristic. In this situation, the Risk Habitat Megacity (RHM) initiative seeks to support local and regional authorities in elaborating indicators applicable in land use and flood risk management.In this article, the indicator approach of the Land Use Management group within the RHM initiative is presented. Based on the analysis of characteristics of and demands on sustainability indicators, existing indicator sets for Santiago de Chile are analysed. Thereafter, the indicator set for sustainable land use management in Santiago de Chile is presented. It was elaborated in a combined bottom–up and top–down approach in discussion with Chilean scientists and stakeholders in order to guarantee its relevancy to practice. The analysis of the already existing indicators in Santiago de Chile shows that the newly developed toolset forms a valuable and complementary addition, mainly for two reasons: the interdisciplinary nature of the set and its reproducibility.  相似文献   
5.
Phytase improves as a feed supplement the nutritional quality of phytate-rich diets (e.g., cereal grains, legumes, and oilseeds) by hydrolyzing indigestible phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and increasing abdominal absorption of inorganic phosphates, minerals, and trace elements. Directed phytase evolution was reported for improving industrial relevant properties such as thermostability (pelleting process) or activity. In this study, we report the cloning, characterization, and directed evolution of the Yersinia mollaretii phytase (Ymphytase). Ymphytase has a tetrameric structure with positive cooperativity (Hill coefficient was 2.3) and a specific activity of 1,073?U/mg which is ~10 times higher than widely used fungal phytases. High-throughput prescreening methods using filter papers or 384-well microtiter plates were developed. Precise subsequent screening for thermostable and active phytase variants was performed by combining absorbance and fluorescence-based detection system in 96-well microtiter plates. Directed evolution yielded after mutant library generation (SeSaM method) and two-step screening (in total ~8,400 clones) a phytase variant with ~20% improved thermostability (58°C for 20?min; residual activity wild type ~34%; variant ~53%) and increased melting temperature (1.5°C) with a slight loss of specific activity (993?U/mg).  相似文献   
6.
Vegetative incompatibility is a widespread phenomenon in filamentous ascomycetes, which limits formation of viable heterokaryons. Whether this phenomenon plays a role in maintaining the homokaryotic state of the hyphae during the vegetative growth of Tuber spp. Gene expression, polymorphism analysis as well as targeted in vitro experiments allowed us to test whether a heterokaryon incompatibility (HI) system operates in Tuber melanosporum. HI is controlled by different genetic systems, often involving HET domain genes and their partners whose interaction can trigger a cell death reaction. Putative homologues to HI-related genes previously characterized in Neurospora crassa and Podospora anserina were identified in the T. melanosporum genome. However, only two HET domain genes were found. In many other ascomycetes HET domains have been found within different genes including some members of the NWD (NACHT and WD-repeat associated domains) gene family of P. anserina. More than 50 NWD homologues were found in T. melanosporum but none of these contain a HET domain. All these T. melanosporum paralogs showed a conserved gene organization similar to the microexon genes only recently characterized in Schistosoma mansoni. Expression data of the annotated HI-like genes along with low allelic polymorphism suggest that they have cellular functions unrelated to HI. Moreover, morphological analyses did not provide evidence for HI reactions between pairs of genetically different T. melanosporum strains. Thus, the maintenance of the genetic integrity during the vegetative growth of this species likely depends on mechanisms that act before hyphal fusion.  相似文献   
7.
Glycans of glycoproteins are often associated with IgE mediated allergic immune responses. Hymenoptera venoms, e.g., carry α1,3-fucosyl residues linked to the proximal GlcNAc of glycoproteins. This epitope, formed selectively by α1,3-fucosyltransferase (FucTA), is xenobiotic and as such highly immunogenic and it also shows cross-reactivity if present on different proteins. Production of post-translationally modified proteins in insect cells is however commonly used and, thus, resulting glycoproteins can carry this highly immunogenic epitope with potentially significant side effects on mammals. To analyze mechanism, specificity and reaction kinetics of the key enzyme, we chose FucTA from Apis mellifera (honeybee) and characterized it by saturation transfer difference (STD) NMR and surface plasmon resonance (SPR) experiments. Specifically, we show here that the donor substrate, GDP-Fucose, binds mostly via its guanine and less so via pyrophosphate and fucosyl fragments and has a KD = 37 μM. Affinity and kinetic studies with both the core α1,6-fucosylated and the unfucosylated octa- or heptasaccharides, respectively, as acceptor substrate revealed that honeybee FucTA prefers the latter structure with affinities of KD ~ 10 mM. Establishment of progress curve analysis using an explicit solution of the integrated Michaelis–Menten equation allowed for determination of key constants of the transfer reaction of the glycosyl residue. The dominant minimum acceptor substrate is an unfucosylated heptasaccharide with Km = 420 μM and kcat = 6 min?1. Time-resolved NMR spectra as well as STD NMR allow molecular insights into specificity, activity and interaction of the enzyme with substrates and acceptors.  相似文献   
8.
9.
The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual “handshaking” mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation.  相似文献   
10.
We screened a total of 92 unrelated patients with neurofibromatosis type 1 (NF1) for mutations in exon 37 of the NF1 gene, by using temperature gradient gel electrophoresis. Two novel mutations were found: a 4 bp deletion in a so-called quasi-symmetric element (6789delTTAC) and a recurrent nonsense mutation, which was identified in two unrelated patients, at codon 2264 (C6792A). The independent origin of the latter mutation in two families was confirmed by haplotype analysis. The nonsense mutation and the 4 bp deletion are both predicted to lead to a truncated protein product lacking the Cterminal 20% (aproximately) of its sequence. The occurrence of three independent mutations among 92 NF1 patients at codons 2263–2264 (exon 37) suggests that a specific search for mutations in this area should be undertaken in screening programs for NF1 mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号