首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Increasing global demands for food underline the need for higher crop yields. The relatively low costs of the most commonly used insecticides in combination with increasing soybean market prices led growers and technical advisors to debate the adequacy of recommended economic thresholds (ETs). The adoption of ETs and pest sampling has diminished in Brazil, leading to excessive pesticide use on soybean. The reduced efficacy of natural biological control, faster pest resurgence, and environment contamination are among the side-effects of pesticide abuse. To address these problems and maximize agricultural production, pest control programs must be guided by a proper integrated pest management (IPM) approach, including the ET concept. Therefore, the most appropriate time to initiate insecticide spraying in soybean is indicated by the available ETs which are supported by experiments over the last 40 years in different edapho-climatic conditions and regions with distinct soybean cultivars. Published scientific data indicate that preventive insecticide use is an expensive and harmful use of chemicals that increases the negative impact of pesticides in agroecosystems. However, the established ETs are for a limited number of species (key pests), and they only address the use of chemicals. There is a lack of information regarding secondary pests and other control strategies in addition to insecticides. It is clear then that much progress is still needed to improve ETs for pest management decisions. Nevertheless, using the current ETs provides a basis for reducing the use of chemicals in agriculture without reducing yields and overall production, thereby improving sustainability.  相似文献   

2.
Phytophagous stink bugs are major soybean pests, and knowledge of spatial distribution models of the pest in the crop is fundamental to establishing an appropriate sequential sampling plan, and thus, allowing the correct utilization of control strategies. This work aimed to study the spatial distribution of phytophagous stink bugs in soybean grown in different cropping systems and determine a sequential sampling plan. The experiment was conducted in Maracaju, MS, Brazil, during the agricultural year of 2012/2013. Soybean cultivars BRS 284 and SYN 1163 RR were placed in an experimental area comprising six fields (two soybean cultivars × three cropping systems). Sampling was performed weekly, using a beat cloth per plot and counting the number of stink bugs found, virtually throughout the soybean reproductive period. Concerning the statistical analyses, we used the dispersion indexes (variance‐to‐mean ratio, Morisita's index, exponent k of the negative binomial and Green's coefficient) and probabilistic methods of frequency adjustment (negative binomial and Poisson). Adult and nymph phytophagous stink bugs showed aggregate disposition in the field regardless of the cropping system, and their numbers were adjusted to the negative binomial probability distribution. There was no difference in the behaviour of adult and nymphs considering the tested cultivars. We elaborated a practical sequential sampling plan for phytophagous stink bug complexes, considering crops intended for the production of grains and seeds.  相似文献   

3.
Field studies of inoculative releases of Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae) in early-maturing soybean, used as a trap crop, were conducted during four consecutive seasons to evaluate the parasitoid's potential as an IPM tactic for use against stink bug (Pentatomidae) species. Fifteen thousand adults of the parasitoid were released per hectare in the trap crop when the first stink bugs were detected in the experimental area. The stink bug population density was reduced by an average of 54% in the trap crop and by 58% in the main crop. The inoculative releases produced a reduction and delay in the stink bug population peak, mainly represented by Nezara viridula (L.), Piezodorus guildinii (Westwood) and Euschistus heros (Fabr.), which were held below economic threshold levels during the most critical stages of stink bug attack on soybean (pod and seed fill, R3–R6). As a result, seed quality was better in areas where T. basalis was released, demonstrating the efficacy of inoculative releases of this egg-parasitoid which could be an important component of the soybean IPM program in Brazil.  相似文献   

4.
Lablab bean (Lablab purpureus) is a popular vegetable crop in Bangladesh, but farmers growing this crop experience significant losses to insect pests despite heavy reliance on conventional insecticides. We conducted field studies to improve pest management in lablab bean by testing biorational insecticides as alternatives to conventional insecticides for the control of pod borers (Maruca vitrata) and aphids (Aphis craccivora), and characterizing flower-inhabiting thrips as an emerging pest in this crop. In field experiments, spinosad was the most promising biorational we tested, suppressing pod-boring caterpillars more effectively than thiamethoxam or quinalphos. In contrast, azadirachtin (neem) did not significantly suppress any of the insect pests we measured, although target aphid populations were generally low at our research site. Using DNA barcoding at the coxI locus combined with morphological identification, we found eight thrips taxa inhabiting lablab bean flowers, dominated by Megalurothrips usitatus and M. distalis/peculiaris. A preliminary regression analysis indicated that these flower-inhabiting thrips reduced lablab bean yield. Our results suggest that spinosad may be useful within lablab bean IPM programs, and that these programs will likely need to incorporate tactics against thrips to effectively protect yield. Finally, we found that DNA barcoding was a valuable tool for pest identification in an understudied crop and region, but that to reach its full potential will require an investment in more comprehensive reference libraries.  相似文献   

5.
害虫生态调控的原理与方法   总被引:44,自引:2,他引:42  
戈峰 《生态学杂志》1998,17(2):38-42
害虫生态调控的原理与方法戈峰(中国科学院动物研究所农业虫鼠害综合治理国家重点实验室,北京100080)ThePrinciplesandMethodsofEcologicalRegulationandManagementofPests.GeFeng(I...  相似文献   

6.
Food, water, and worker protection regulations have driven availability, and loss, of pesticides for use in pest management programs. In response, public-supported research and extension projects have targeted investigation and demonstration of reduced-risk integrated pest management (IPM) techniques. But these new techniques often result in higher financial burden to the grower, which is counter to the IPM principle that economic competitiveness is critical to have IPM adopted. As authorized by the 2002 Farm Bill and administered by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), conservation programs exist for delivering public-supported financial incentives to growers to increase environmental stewardship on lands in production. NRCS conservation programs are described, and the case for providing financial incentives to growers for implementing IPM is presented. We also explored the opportunity and challenge to use one key program, the Environmental Quality Incentives Program (EQIP), to aid grower adoption of IPM. The EQIP fund distribution to growers from 1997 to 2002 during the last Farm Bill cycle totaled approximately 1.05 billion dollars with a portion of funds supporting an NRCS-designed pest management practice. The average percentage of allocation of EQIP funds to this pest management practice among states was 0.77 +/- 0.009% (mean +/- SD). Using Michigan as an example, vegetable and fruit grower recognition of the program's use to implement IPM was modest (25% of growers surveyed), and their recognition of its use in aiding implementation of IPM was improved after educational efforts (74%). Proposals designed to enhance program usefulness in implementing IPM were delivered through the NRCS advisory process in Michigan. Modifications for using the NRCS pest management practice to address resource concerns were adopted, incentive rates for pest management were adjusted, and an expanded incentive structure for IPM technique adoption was tabled for future consideration. The case is strong for using public-supported financial incentives offered by the EQIP to aid grower adoption of IPM as a means to address resource concerns, but current use of the EQIP for this purpose is modest to meager. With appropriate program adjustments and increased grower awareness, USDA NRCS conservation programs, and the EQIP in particular, may provide an important opportunity for growers to increase their use of IPM as a resource conservation and farm management tool.  相似文献   

7.
The imported longhorned weevil, Calomycterus setarius Roelofs, is an occasional pest of soybean, Glycine max (L.), and can cause substantial defoliation of seedling soybean when the weevil is present in large numbers. Because weevil populations can reach high levels, the potential exists for significant seedling injury, so economic injury levels (EILs) are needed for imported longhorned weevil on seedling soybean. Because the bean leaf beetle, Cerotoma trifurcata (Forster), also is present on seedling soybean, injury by this insect should be included in EIL calculations. This study was conducted to (1) determine daily soybean consumption rates of imported longhorned weevil; (2) compare soybean injury responses between weevil injured and noninjured soybeans; and (3) develop multiple species EILs for imported longhorned weevil and bean leaf beetle. Field and laboratory studies were conducted in 1997 to determine weevil daily consumption rates. Field experiments were conducted in 1998 to examine physiological responses of soybean to weevil injury. Field and laboratory consumption rates were 0.16 and 0.21 cm2 per day, respectively. There were no significant differences in physiological responses (i.e., photosynthetic rates, stomatal conductance, and transpiration rates) between noninjured soybean leaflets (caged) and weevil-injured leaflets. Multiple-species EILs were developed for imported longhorned weevil and bean leaf beetle on VC through V3 soybean.  相似文献   

8.
Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae) is a major soybean (Glycine max (L.) Merrill) pest and reduces grain quality and yield worldwide. In the context of integrated pest management strategies, plant resistance stands out as an extremely valuable tool for the management of pest populations. Here, we evaluated the resistance of several soybean entries to P. guildinii using tests of attractiveness and feeding preference. We also evaluated trichome number and length as well as pod hardness to evaluate the relationships between these parameters and the resistance to stink bug. D 75-10169, PI 171451, PI 229358, PI 227687, “IAC 100,” IAC 78-2318, PI 274454, PI 274453 and “IAC 19” were less attractive and less consumed by stink bugs. D 75-10169, PI 227687 and PI 274454 received low probe numbers and a short consumption duration per probe; “IAC 100” and PI 274453 received low probe numbers; PI 171451 and PI 229358 received short probe durations; and “IAC 19” received the highest number of probes. There was no correlation between trichome density and length with the attractiveness and feeding preference of the adult insects; however, pod hardness results suggested that this morphological factor may influence the number of probes performed by the insect. PI’s entries, D 75-10169, “IAC 100” and “IAC 19” expressed antixenosis resistance and should be appropriate for use in soybean breeding programs aimed at developing entries with higher resistance to pest insects.  相似文献   

9.
The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.  相似文献   

10.
The European tentiform leafminers, Phyllonorycter blancardella (Fabricius) and P. mespilella (Hübner) (Lepidoptera: Gracillariidae), have infested apple, Malus domestica Borkhausen, in North America for at least 60–70 years. Unreliable taxonomic methods and lack of voucher specimens, however, have contributed to poor understanding of precisely when, where, and how these leafminers were introduced. Tentiform leafminers developed into significant foliar pests at about the time when adult resistance to broad-spectrum insecticides was detected in the 1970s and 1980s. At present, growers manage leafminers with insecticides and, to a lesser extent, with biological control. Most management programs for orchard pests rely on insecticides that are highly toxic to parasitic wasps, which hampers biological control. New techniques promoted in the context of integrated pest management (IPM) may improve biological control by reducing insecticidal use, but their adoption will depend on cost, labor, need to control other pests, and demands of the marketplace. Management programs must be flexible enough to accommodate changes in the species composition of leafminers and their parasitoids. Procedures to exclude pests may slow the rate of new introductions of leafminers and other pests, but they will not entirely protect the North American apple industry. Once new apple pests reach North America, they face few obstacles to further dispersal. The abundance of potential host plants, the lack of rigorous inspections, and new retail practices may facilitate the dispersal of exotic pests.  相似文献   

11.
This paper describes the current state of the biological control of insect pests in litchi orchards in China. Litchi is growing in importance as a fruit in China and the control of litchi stink bug, Tessaratoma papillosa (Drury) (Hemiptera: Pentatomidae) by the solitary egg endoparasitoid Anastatus japonicus (Ashmead) (Hymenoptera: Eulophidae) is an example of successful classical biological control. This review will cover the current economic status of litchi production in China, the challenges faced in litchi pest management, and possible solutions. The review will also focus on research activities and experiences drawn from many years of experimentation and field work by researchers in an attempt to promote biological control and reduce insecticide use to produce healthier food and a safer environment. Studies on the biology and ecology of T. papillosa and its egg parasitoid A. japonicas will be summarized. The adult longevity and long oviposition period, in combination with the short life cycle, high fecundity, and resistance to harsh environmental conditions make this parasitoid ideal for biological control. The straightforwardness of mass-rearing and easy access to high quality factitious host eggs have made it possible to control T. papillosa with this parasitoid in litchi orchards over large areas in China. Both pest and parasitoid have been thoroughly studied, and A. japonicus has been used in the field for control since late 1960s. The introduction of techniques for mass-rearing of A. japonicus and the parasitoid’s efficacy in controlling T. papillosa once released will be discussed. Finally, we will address the problems currently facing litchi pest management and the importance of conservation biological control in the development and implementation of integrated pest management (IPM).  相似文献   

12.
Riptortus pedestris (F.) (Hemiptera: Alydidae) is a key pest of soybean [Glycine max (L.) Merr.] in Korea and Japan. Aggregation pheromone traps have been used to attract R. pedestris. An aggregation pheromone, produced by males of R. pedestris, also attracts the egg parasitoid, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae). As a new method of pest management, we propose the use of nonviable host eggs in the pheromone trap together to both trap R. pedestris and propagate parasitoids on host eggs attached to the trap. Approximately ten-thousand nonviable refrigerated host eggs were placed outside pheromone traps in three soybean fields (0.167-0.284 ha.). During the sampling period from 7 August to 8 October in 2008, statistical significance of treatment was not found in any life stage of R. pedestris population. However, significantly higher parasitism of both natural (78-91%) and refrigerated eggs (36-59%) occurred in the treatment sites, compared with control sites where parasitism was 0-62% and 16-34% on natural and refrigerated eggs, respectively. The proportion of bean pods with stink bug feeding damage was significantly reduced by 47% in the treatment sites. This study is the first trial of an integrated pest management (IPM) strategy using both nonviable host eggs and trap that simultaneously targets both the pest and its natural enemy.  相似文献   

13.
The stink bugs, Halyomorpha halys and Riptortus pedestris, are two of the most economically important pests of leguminous crops and fruits in Korea. Here we present the results from a field monitoring test that evaluated the effect of variation in rocket trap type and color on stink bugs captures. We tested various types of rocket traps, along with wing combinations and landing boards of various colors. The test was run in soybean fields in Miryang, Korea. We developed a modified rocket trap intended to enhance the capture efficacy of stink bugs. We evaluated traps including (1) yellow rocket trap with a solar fan and blue LED lamp, (2) a yellow trap with solar fan but no light, (3) rocket traps with black, green, yellow, white, red, brown, and blue color stimuli, (4) different color combinations of trap wings, and (5) traps with a landing board were evaluated. Our results showed that yellow winged rocket traps with solar fans and blue LED lamps attracted significantly more stink bug species than other traps, in both soybean fields. Use of these improved traps such as a yellow trap with a solar fan and blue LED lamp, and a yellow trap with a solar fan would therefore enhance the monitoring and capture of stink bugs in diversified agro-ecological landscapes. The potential use of traps with a specific hue, combination of features, and modifications to monitor stink bugs accurately is discussed. Continuing improvements to traps to meet the demands of a changing pest landscape and agricultural mechanization are needed.  相似文献   

14.
我国农业害虫综合防治研究现状与展望   总被引:9,自引:0,他引:9  
害虫综合防治作为农业生产的一项重要策略,在农业可持续发展中具有举足轻重的作用。近年来,针对我国害虫防治所存在的技术需求,科技部等部门先后通过973计划、863计划、科技支撑计划和农业行业专项等对重要害虫防治研究立项支持。通过这些项目的实施,我国建成了一支由国家和省级科研单位和大学组成的专业科研队伍和研究平台,对害虫监测预警技术、基于生物多样性保护利用的生态调控技术、害虫生物防治技术、化学防治技术、抗虫转基因作物利用技术等方面的研究取得了一系列的重要进展,研究建立了棉花、水稻、玉米、小麦和蔬菜等作物重要害虫的综合防治技术体系,并在农业生产中发挥了重要作用。以基因工程和信息技术为代表的第二次农业技术革命的到来,推动了害虫综合防治的理论发展,为害虫综合防治技术的广泛应用提供了新的机遇。地理信息系统、全球定位系统等信息技术和计算机网络技术的应用,提高了对害虫种群监测和预警的能力和水平,转基因抗虫作物的商业化种植等技术的应用显著增强了对害虫种群的区域性调控效率。针对产业结构调整和全球气候变化所带来的害虫新问题,进一步发展IPM新理论与新技术将成为我国农业昆虫学研究的重要方向之一。  相似文献   

15.
Abstract  Lucerne ( Medicago sativa ) has been suggested as an ideal refuge habitat as part of an integrated pest management (IPM) program because it harbours high numbers of beneficial arthropods. Whether or not cutting of lucerne encourages the movement of these beneficials into adjacent target crops is unknown. Vacuum samples were used to determine the effects of cutting lucerne on arthropod abundance (pests and predators) within lucerne and adjacent soybean ( Glycine max ) crops. Vacuum-sample collections of arthropods were conducted before and after lucerne cutting on seven occasions in four fields over two seasons. In the lucerne, 10 m by 1 m strips parallel to the crop interface were sampled at 5, 10, 15, 20 and 30 m from the interface. In the soybean, 10 m of row were sampled at the same distances from the crop interface. The abundance of predators in lucerne was reduced immediately after cutting at all distances from the interface. Predator abundance in soybean did not show any change. The cutting of lucerne significantly reduced pest numbers within the lucerne but had little effect on pest abundance in the adjacent soybean. The temporal pattern in pest and predator abundance was very different for each field sampled. Generally, arthropods decreased in abundance after cutting and gradually increased as the lucerne grew back. In soybeans, arthropod numbers fluctuated regardless of the cutting of the lucerne. Cutting of lucerne alone does not guarantee movement of predators into the adjacent target crop. The presence of lucerne fields within a cropping area may have some impact on regional predator populations, and so still be useful for IPM programs, but this has yet to be tested critically.  相似文献   

16.
The bean bug, Riptortus pedestris (Hemiptera: Alydidae) is a polyphagous insect pest and has a wide range of hosts including leguminous plants and tree fruits. Currently, the management of R. pedestris mainly relies on the use of insecticides, and most studies have focused on the lethal effects of insecticides. However, insecticides can not only kill insects directly, but can also affect behavioral changes of survivors when exposed to sub-lethal doses. In this study, we investigated locomotory behaviors (vertical movement, horizontal movement, and flight ability) and feeding behaviors (frequency of insects approaching dried soybean seeds and number of stylet sheaths left on the dried soybean seeds by insects) of surviving R. pedestris pre-exposed to five insecticide residues for 4 h. None of the three insecticides (bifenthrin, etofenprox, and acetamiprid) tested had significant effects on the locomotory behaviors of R. pedestris adults compared to the water-treated control group. Fenitrothion- and dinotefuran-treated groups showed a significant decrease in the vertical movement compared to the water-treated control, but the insects recovered mobility 24 h after the initial exposure. The frequency of R. pedestris approaching to dried soybean seeds was affected by four insecticides (fenitrothion, etofenprox, bifenthrin, and dinotefuran), but the actual feeding activity of R. pedestris determined by the stylet sheaths remaining on the dried soybean seed was only affected by fenitrothion treatment. Given the relatively low toxic effects of five insecticides tested, a better understanding of the impact of insecticides on the behavior of target species is needed for a more robust pest control strategy and a more effective use of insecticides in IPM programs.  相似文献   

17.
Levels of economic insect damage and their effects on crop production are the most often-discussed issue in insect management today. The economic injury level (EIL) concept is the base for decision-making in most integrated pest management (IPM) programs. IPM programs are fundamentally different from control approaches that handle insect problems by focusing on tolerating insect effects. EIL is essential for IPM programs as it indicates which levels of insect populations can be tolerated and which cannot. By increasing our ability to tolerate insects, it is possible to eliminate or reduce the need for management tactics. Scientists can maintain environmental quality through better decisions on the use of those tactics. EILs help maintain environmental quality by reducing unnecessary use of management tactics, especially insecticides. However, including environmental considerations explicitly in the decision-making process could greatly improve the ability of IPM to sustain environmental quality. The EIL components include economic damage, economic thresholds, and the EIL itself. Increased availability of calculated EILs and their related economic thresholds would reduce unnecessary use of management tactics. An environmental EIL evaluates a management tactic based not only on its direct costs and benefits to the user but also on its effects on the environment. There are many factors that can reduce crop yield. One important cause is insects. Insects that cause loss to the fruits are frequently more destructive than those that damage leaves, stems and roots. For example, cotton is infested by Spodoptera littoralis (Boisd.), Pectinophora gossypiella (Saund.), Helicoverpa armigera (Hün.) and Earias insulana (Boisd.) cause the greatest yield losses. The amount of yield loss is dependent upon a number of factors, i.e., plant variety, soil fertility, insect population and skill in handling crop production, etc. Comparatively tolerant varieties, even at the cost of slightly less yield potential, will be more suitable under such conditions.  相似文献   

18.
Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.  相似文献   

19.
害虫区域性生态调控的理论、方法及实践   总被引:13,自引:2,他引:11  
戈峰 《昆虫知识》2001,38(5):337-341
本文在分析害虫生态调控的生态学基础上 ,论述了害虫区域性生态调控的原理与方法 ,并以华北棉田害虫管理实践为例 ,介绍了害虫区域性生态调控的实施过程  相似文献   

20.
Laboratory studies with Euschistus cornutus Dallas indicated that nymphs complete development when feeding on green bean, Phaseolus vulgaris L. pod, on soybean, Glycine max (L.) Merrill pod, and on raw shelled peanut, Arachis hypogaea L., but not on fruit (berry) of privet, Ligustrum lucidum Ait. Total mortality was lower on green bean pod (45%), and higher on soybean pod and peanut raw (75 and 80%, respectively). Nymph developmental time was significantly longer for females feeding on green bean pod (37.4 days) than on soybean pod (27 days); a single data was observed on peanut raw (32 days). Males showed no significant differences in total nymph developmental time among foods (31.3 to 33.0 days). At adult emergency, fresh body weight of females (52.2 to 68.5 mg) and males (61.9 to 71.3 mg) did not show statistical differences among foods tested nor between genders. Survivorship of E. cornutus adult after 50 days was greater on peanut raw than on green bean or soybean pod; on privet berry, the majority of males and females (>80%) were dead after 20 days. The reproductive performance data was, in general, greater on peanut raw than on green bean or soybean pod; on privet fruit, no female laid eggs. Fresh body weight gain occurred on all foods, except on privet berry, on which adults lost weight over time. Records of specimens from insect collections in Brazil indicated that E. cornutus occurs in the Southeast and South regions (19° to 31° S latitude). The most common host plant is soybean, suggesting a potential pest status of this stink bug on this crop in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号