首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular genetic methods was performed on six strains of an unknown Gram-positive, nonspore-forming, facultative anaerobic coccus-shaped bacterium isolated from a swine-manure storage pit. On the basis of 16S rRNA, RNA polymerase-subunit (rpoA), and the 60-kilodalton chaperonin (cpn60) gene sequence analyses, it was shown that all the isolates were enterococci but formed two separate lines of descent. Pairwise 16S rRNA sequence comparisons demonstrated that the two novel organisms were most closely related to each other (97.9 %) and to Enterococcus aquimarinus (97.8 %). Both organisms contained major amounts of C16:0, C16:1 ω7c, and C18:1 ω7c/12t/9t as the major cellular fatty acids. Based on biochemical, chemotaxonomic, and phylogenetic evidence, the names Enterococcus lemanii sp. nov. (type strain PC32T = CCUG 61260T = NRRL B-59661T) and Enterococcus eurekensis sp. nov. (type strain PC4BT = CCUG 61259T = NRRL B-59662T) are proposed for the hitherto undescribed species.  相似文献   

2.
A novel endophytic actinomycete, designated strain NEAU-J3T, was isolated from soybean root (Glycine max (L.) Merr) and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain NEAU-J3T fell within the family Micromonosporaceae. The strain was observed to form an extensively branched substrate mycelium, which carried non-motile oval spores with a smooth surface. The cell walls of strain NEAU-J3T were determined to contain meso-diaminopimelic acid and galactose, ribose and glucose were detected as whole-cell sugars. The major menaquinones were determined to be MK-9(H4) and MK-9(H6). The phospholipids detected were phosphatidylcholine and phosphatidylethanolamine. The major cellular fatty acids were determined to be C16:0, C18:1 ω9c, C18:0, C17:0, C17:1 ω7c, anteiso-C17:0, C16:1 ω7c and C15:0. The DNA G + C content was 62.5 mol%. On the basis of the morphological and chemotaxonomic characteristics, phylogenetic analysis and characteristic patterns of 16S rRNA gene signature nucleotides, strain NEAU-J3T is considered to represent a novel species of a new genus within the family Micromonosporaceae, for which the name Wangella harbinensis gen. nov., sp. nov. is proposed. The type strain of Wangella harbinensis is strain NEAU-J3T (=CGMCC 4.7039T = DSM 45747T).  相似文献   

3.
Four yellow pigmented strains (91A-561T, 91A-576, 91A-593T, and JM-1085T) isolated from plant materials, showed 97.2–98.7 % 16S rRNA gene sequence similarities among each other and were studied in a polyphasic approach for their taxonomic allocation. Cells of all four isolates were rod-shaped and stained Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the four bacteria had highest sequence similarities to Chryseobacterium formosense (97.2–98.7 %), Chryseobacterium gwangjuense (97.1–97.8 %), and Chryseobacterium defluvii (94.6–98.0 %). Sequence similarities to all other Chryseobacterium species were below 97.5 %. Fatty acid analysis of the four strains showed Chryseobacterium typical profiles consisting of major fatty acids C15:0 iso, C15:0 iso 2-OH/C16:1 ω7c, C17:1 iso ω9c, and C17:0 iso 3-OH, but showed also slight differences. DNA–DNA hybridizations with type strains of C. gwangjuense, C. formosense, and C. defluvii resulted in values below 70 %. Isolates 91A-561T and 91A-576 showed DNA–DNA hybridization values >80 % indicating that they belonged to the same species; but nucleic acid fingerprinting showed that the two isolates represent two different strains. DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed, that both strains 91A-561T and 91A-576 represent a novel species, for which the name Chryseobacterium geocarposphaerae sp. nov. (type strain 91A-561T=LMG 27811T=CCM 8488T) is proposed. Strains 91A-593T and JM-1085T represent two additional new species for which we propose the names Chyrseobacterium zeae sp. nov. (type strain JM-1085T=LMG 27809T, =CCM 8491T) and Chryseobacterium arachidis sp. nov. (type strain 91A-593T=LMG 27813T, =CCM 8489T), respectively.  相似文献   

4.
Two novel aerobic p-n-nonylphenol-degrading bacterial strains were isolated from seawater obtained from the coastal region of Ogasawara Islands, Japan. The 16S rRNA gene sequence analysis indicated that the strains are affiliated with the order Alteromonadales within the class Gammaproteobacteria. One isolate, strain KU41G2, is most closely related to Maricurvus nonylphenolicus (99.2 % similarity), and is tentatively identified as M. nonylphenolicus. The other isolate, strain KU41GT, is also most closely related to M. nonylphenolicus; however, the 16S rRNA gene sequence similarity was only 94.7 %. Cells of strain KU41GT are Gram-negative rods with a single polar flagellum. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were C17:1 ω8c (24.2 %); C15:0 iso 2-OH; and/or C16:1 ω7c (16.3 %), C15:0 (10.3 %), C11:0 3-OH (9.5 %), C9:0 3-OH (6.7 %), C10:0 3-OH (6.4 %), and C18:1 ω7c (5.5 %). The DNA G+C content was 53.3 mol%. On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41GT is suggested to represent a novel species of a new genus, for which we propose the name Pseudomaricurvus alkylphenolicus gen. nov., sp. nov. The type strain of P. alkylphenolicus is KU41GT (=JCM 19135T = KCTC 32386T).  相似文献   

5.
The taxonomic position of a streptomycete isolated from a potato tubercle was determined by using a polyphasic approach. The organism had chemotaxonomic and morphological properties consistent with its classification in the genus Streptomyces and formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree. It was found to be closely related to Streptomyces celluloflavus NRRL B-2493T (99.4 % 16S rRNA gene similarity) and shared a 99.0 % 16S rRNA gene similarity value with Streptomyces albolongus NRRL B-3604T and Streptomyces cavourensis subsp. cavourensis NBRC 13026T; low levels of DNA–DNA relatedness with these organisms showed that the isolate belonged to a distinct genomic species. The isolate was distinguished readily from the type strains of these species using a combination of morphological and other phenotypic properties. On the basis of these results, it is proposed that isolate ASBV-1T (= CBMAI 1465T = CCMA 894T = NRRL B-24922T) be classified as the type strain of Streptomyces araujoniae sp. nov.  相似文献   

6.
A taxonomic study was carried out on a novel aerobic bacterial strain (designated CC-LY736T) isolated from a fermentor in Taiwan. Cells of strain CC-LY736T were Gram-stain negative, spiral-shaped and motile by means of a monopolar flagellum. Strain CC-LY736T shared the greatest degree of 16S rRNA gene sequence similarity to Azospirillum irakense DSM 11586T (97.2 %), Rhodocista centenaria JCM 21060T (96.3 %) and Rhodocista pekingensis JCM 11669T (96.1 %). The major fatty acids were C16:0, C16:1 ω5c, C19:0 cyclo ω8c, C18:1 ω7c/C18:1 ω6c, C16:0 3-OH and C18:1 2-OH. The predominant polar lipids included phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine and two unidentified glycolipids. The common major respiratory quinone was ubiquinone Q-10 and predominant polyamines were sym-homospermidine and putrescine. The DNA G+C content of strain CC-LY736T was 67.6 ± 0.1 mol %. During phylogenetic analysis, strain CC-LY736T formed a unique phyletic lineage associated with Rhodocista species. However, the combination of genetic, chemotaxonomic and physiological data clearly indicated that strain CC-LY736T was a novel representative of the family Rhodospirillaceae. Based on the polyphasic comparison, the name Niveispirillum fermenti gen. nov., sp. nov. is proposed; the type strain of the type species is CC-LY736T (= BCRC 80504T = LMG 27263T). In addition, the reclassifications of Azospirillum irakense as Niveispirillum irakense comb. nov. (type strain KBC1T = ATCC 51182T = BCRC 15764T = CIP 103311T), and Azospirillum amazonense as Nitrospirillum amazonense gen. nov., sp. nov. (type strain Am14T = ATCC 35119T = BCRC 14279T = DSM 3787T) are proposed based on the polyphasic taxonomic data obtained in this study.  相似文献   

7.
Two Gram-stain-negative, facultative anaerobic, motile, rod-shaped strains, S-B4-1UT and JOB-63a, forming small whitish transparent colonies on marine agar, were isolated from a sponge of the genus Haliclona. The strains shared 99.7% 16S rRNA gene sequence identity and a DNA-DNA hybridization value of 100%, but were differentiated by genomic fingerprinting using rep-PCRs. 16S rRNA gene sequence phylogeny placed the strains as a sister branch to the monophyletic genus Endozoicomonas (Oceanospirillales; Gammaproteobacteria) with 92.3–94.3% 16S rRNA gene sequence similarity to Endozoicomonas spp., 91.9 and 92.1% to Candidatus Endonucleobacter bathymodiolin, and 91.9 to 92.1% to the type strains of Kistimonas spp. Core genome based phylogeny of strain S-B4-1UT confirmed the phylogenetic placement. Major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and 8 (C18:1 ω7c/C18:1 ω6c) followed by C10:0 3-OH, C16:0, and C18:0. The G + C content was 50.1–51.4 mol%. The peptidoglycan diamino acid of strain S-B4-1UT was meso-diaminopimelic acid, the predominant polyamine spermidine, the major respiratory quinone ubiquinone Q-9; phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine were major polar lipids. Based on the clear phylogenetic distinction, the genus Parendozoicomonas gen. nov. is proposed, with Parendozoicomonas haliclonae sp. nov. as type species and strain S-B4-1UT (= CCM 8713T = DSM 103671T = LMG 29769T) as type strain and JOB-63a as a second strain of the species. Based on the 16S rRNA gene sequence phylogeny of the Oceanospirillales within the Gammaproteobacteria, the Endozoicomonaceae fam. nov. is proposed including the genera Endozoicomonas, Parendozoicomonas, and Kistimonas as well as the Candidatus genus Endonucleobacter.  相似文献   

8.
A novel Gram-negative, orange-pigmented bacterial strain JLT2008T was isolated from the surface seawater of the Western Pacific and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JLT2008T belonged to the genus Erythrobacter, sharing the highest similarity (96.6 %) with Erythrobacter gangjinensis K7-2T and the lowest similarity (94.9 %) with Erythrobacter litoralis DSM 8509T. Strain JLT2008T did not contain bacteriochlorophyll a, and the predominant respiratory lipoquinone was ubiquinone-10. The major fatty acids were C18:1 ω7c, C16:0, C16:1 ω7c/C16:1 ω6c. The prominent polar lipids were sphingoglycolipid, phosphatidylethanolamine, and phosphatidylglycerol. The genomic G + C content was 60.1 mol %. Based on the polyphasic taxonomic data, a novel species within the genus Erythrobacter, and with the name Erythrobacter westpacificensis sp. nov., is proposed. The type strain is JLT2008T (=CGMCC 1.10993T = JCM 18014T).  相似文献   

9.
A Gram-negative bacterial strain, designated WB1T, was isolated from a domestic refrigerator in Guangzhou, PR China. Cells of strain WB1T were oxidase-negative, catalase-positive, strictly aerobic, non-spore-forming and non-motile coccobacilli with peritrichous fimbriae-like structures. The strain was able to grow at 10–40 °C with optimum growth at 28–30 °C, pH 6.0–8.0 (optimum, pH 7.0) and 0–6 % NaCl (w/v, optimum, 0.5 %). Phylogenetic analyses based on 16S rRNA gene and rpoB gene sequences revealed that strain WB1T belonged to the genus Acinetobacter and was most closely related to A. indicus DSM 25388T (97.2 % 16S rRNA gene sequence similarity) and A. radioresistens NBRC 102413T (96.8 %). The DNA G + C content of strain WB1T was 46.74 ± 0.04 mol % and the major fatty acids comprised summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C18:1 ω9c, C16:0 and C12:0. The predominant respiratory quinone was identified as Q-9 and the polar lipids as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and an unidentified phospholipid. Phenotypic, phylogenetic and chemotaxonomic data, including low DNA–DNA relatedness with closely related type strains, supported that strain WB1T represents a distinct novel species in the genus Acinetobacter, for which the name Acinetobacter refrigeratorensis sp. nov. was proposed. The type strain is WB1T (=GIMCC 1.663T = CCTCC AB 2014197T = KCTC 42011T).  相似文献   

10.
A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).  相似文献   

11.
A proteobacterial strain designated R1-3T was isolated from indoor air of a pharmaceutical environment. Cells were Gram-stain-negative, oxidase- and catalase-positive, aerobic, motile and rod-shaped. Strain R1-3T grew optimally at pH 7, 30 °C and in 0–2 % NaCl on R2A agar. The 16S rRNA gene sequence analysis indicated that strain R1-3T belongs to the genus Sphingomonas, and is closely related to Sphingomonas paucimobilis ATCC 29837T (98.4 % sequence similarity). However, the DNA–DNA relatedness between the two strains was 43 ± 5 % (reciprocal = 37 ± 3 %), which was well below the suggested level for species distinction. Sphingomonas yabuuchiae GTC868T (97.7 % 16S rRNA gene sequence similarity) and Sphingomonas pseudosanguinis G1-2T (97.6 %) were also found as distantly related taxa. Strain R1-3T was sensitive to most of the tested antibiotics except for erythromycin and streptomycin. The major fatty acid was a summed feature consisting of C18:1 ω7c and/or C18:1 ω6c, and minor proportions of C14:0 2-OH, C16:0 and a summed feature consisting of C16:1 ω7c and/or C16:1 ω6c were also present. The DNA G + C content was 67.2 ± 1.0 mol%. The major polyamines were sym-homospermidine and spermidine. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, and minor amounts of a sphingoglycolipid, a phospholipid, an aminoglycolipid and an unidentified lipid were also present. The phenotypic, phylogenetic and chemotaxonomic data not only supported the affiliation of strain R1-3T to the genus Sphingomonas, but also distinguished R1-3T from related species. On the basis of physiological, chemotaxonomic and phylogenetic evidences, strain R1-3T clearly merits recognition as a novel species of Sphingomonas, for which the name Sphingomonas aeria sp. nov. is proposed. The type strain is R1-3T (= KCTC 42061T = JCM 19859T).  相似文献   

12.
A Gram-negative, facultatively anaerobic, non-motile and rod-shaped bacterial strain, designated SMK1-12T, was isolated from a tidal flat sediment on the western coast of Korea. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences showed that strain SMK1-12T belonged to the genus Shewanella, clustering with the type strain of Shewanella amazonensis. Strain SMK1-12T exhibited the highest 16S rRNA gene sequence similarity value (97.0 %) and the highest gyrB sequence similarity value (87.8 %) to S. amazonensis SB2BT, respectively. Strain SMK1-12T contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The major fatty acids (>10 % of the total fatty acids) detected in strain SMK1-12T were the MIDI system summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c), iso-C15:0, C17:1 ω8c and C16:0. The DNA G+C content of strain SMK1-12T was 58.0 mol% and its mean DNA–DNA relatedness value with S. amazonensis ATCC 700329T was 15 ± 4.6 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SMK1-12T is distinguishable from recognized Shewanella species. On the basis of the data presented, strain SMK1-12T is considered to represent a novel Shewanella species, for which the name Shewanella litorisediminis sp. nov. is proposed. The type strain is SMK1-12T (=KCTC 23961T = CCUG 62411T).  相似文献   

13.
A Gram-negative, rod-shaped organism, isolated from the surface of the medical leech Hirudo verbana was characterized phenotypically and genotypically. The calculated 16S rRNA gene sequence similarities to those of the most closely related species grouped strain E84T into the genus Devosia showing the highest similarities to Devosia limi (98.1 %), followed by Devosia psychrophila (97.9 %), Devosia neptuniae (97.3 %), and Devosia glacialis (97.5 %). Chemotaxonomic analyses showed that the major quinone was ubiquinone Q-10. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and three glycolipids. The major fatty acid profile consisted of C18:1 ω7c 11-methyl, C19:0 cyclo ω8c, and C16:0, C18:0 and C18:1 ω7c with C18:0 3OH as hydroxylated fatty acid. This profile is very similar to those of the patterns reported for the already described Devosia species. The results of DNA–DNA hybridization, physiological and biochemical tests allowed both genotypic and phenotypic differentiation of strain E84T from all other Devosia species suggesting a novel species for which the name Devosia epidermidihirudinis sp. nov. is proposed, with the type strain E84T (=CIP 110375T = LMG 26909T = CCM 8398T).  相似文献   

14.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

15.
A Gram-negative, aerobic, rod-shaped, motile, non-spore-forming bacterial strain, designated 13-QT, was isolated from seaside soil under the stacks of the red algae in Hainan province in China. Identification was carried out on the basis of polyphasic taxonomy. Phylogenetic analysis of 16S rRNA gene sequences showed that strain 13-QT belonged to the genus Pedobacter, and the highest similarity was 94.4 % with Pedobacter terricola KCTC 12876T. Strain 13-QT was able to grow at 10–40 °C, in pH 5.0–10.0, in the presence of 0–2.0 % NaCl. The major fatty acids were iso-C15:0 (40.4 %), summed feature 3 (comprising iso-C15:0 2-OH and/or C16:1 ω7c) (18.9 %) and iso-C17:0 3-OH (18.4 %). The predominant menaquinone was MK-7. The G+C content of the genomic DNA was 42.7 mol%. Strain 13-QT could be distinguished from the nearest phylogenetic neighbors by various chemotaxonomic and phenotypic properties. The results of the polyphasic analyses suggested that strain 13-QT should be considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter hainanensis sp. nov. is proposed. The type strain is 13-QT (=CCTCC AB 2012076T = NRRL B-59850T).  相似文献   

16.
Polyphasic analysis was done on 24 strains of Bisgaard taxon 16 from five European countries and mainly isolated from dogs and human dog-bite wounds. The isolates represented a phenotypically and genetically homogenous group within the family Pasteurellaceae. Their phenotypic profile was similar to members of the genus Pasteurella. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry clearly identified taxon 16 and separated it from all other genera of Pasteurellaceae showing a characteristic peak combination. Taxon 16 can be further separated and identified by a RecN protein signature sequence detectable by a specific PCR. In all phylogenetic analyses based on 16S rRNA, rpoB, infB and recN genes, taxon 16 formed a monophyletic branch with intraspecies sequence similarity of at least 99.1, 90.8, 96.8 and 97.2 %, respectively. Taxon 16 showed closest genetic relationship with Bibersteinia trehalosi as to the 16S rRNA gene (95.9 %), the rpoB (89.8 %) and the recN (74.4 %), and with Actinobacillus lignieresii for infB (84.9 %). Predicted genome similarity values based on the recN gene sequences between taxon 16 isolates and the type strains of known genera of Pasteurellaceae were below the genus level. Major whole cell fatty acids for the strain HPA 21T are C14:0, C16:0, C18:0 and C16:1 ω7c/C15:0 iso 2OH. Major respiratory quinones are menaquinone-8, ubiquinone-8 and demethylmenaquinone-8. We propose to classify these organisms as a novel genus and species within the family of Pasteurellaceae named Frederiksenia canicola gen. nov., sp. nov. The type strain is HPA 21T (= CCUG 62410T = DSM 25797T).  相似文献   

17.
A novel, gram reaction positive aerobic actinobacterium, designated G12T, not validly named as Geodermatophilus obscurus subsp. amargosae, was accessed in the DSMZ open collection as DSM 46136T. The optimal growth was at 2,535 °C, at pH 6.0–12.0 and in the absence of NaCl, forming greenish-black-coloured colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the strain was 73.0 mol%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone and galactose was detected as a diagnostic sugar. The major cellular fatty acid was branched-chain saturated acid iso-C15:0. The 16S rRNA gene showed 94.2–99.5 % sequence identity with the members of the genus Geodermatophilus. Based on the chemotaxonomic results and 16S rRNA gene sequence analysis, strain G12T is proposed to represent a novel species, Geodermatophilus amargosae. Type strain is G12T [=G96] (=DSM 46136T = CCUG 62971T = MTCC 11559T = ATCC 25081T = JCM 3153T = NBRC 13316T = NRRL B-3578T = KCTC 9360T). The INSDC accession number is HF679056.  相似文献   

18.
A novel bacterial strain designated GJW-30T was isolated from soil of the lava forest, Gotjawal, located in Aewol, Jeju, Korea. Strain GJW-30T was found to be strictly aerobic, Gram-negative and to form pleomorphic, non-motile rods and white colonies on R2A agar. The major fatty acids were identified as C18:1ω7c, C16:0 and C17:0, the predominant isoprenoid quinone as Q-10, the polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified aminolipid and an unidentified lipid. The cell-wall sugar pattern of strain GJW-30T was found to be composed of glucose, ribose and rhamnose and meso-DAP as the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C content of strain GJW-30T is 62.2 mol%. Phylogenetic analysis, based on 16S rRNA gene sequence similarities, showed that strain GJW-30T forms a deep branch within the order Rhizobiales, sharing the highest level of sequence homology with Bradyrhizobium oligotrophicum LMG 10732T (93.6 %). On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain GJW-30T is considered to represent a novel genus and species, for which the name Variibacter gotjawalensis gen. nov., sp. nov. (the type strain is GJW-30T = KCTC 32391T = CECT 8514T = LMG 28093T) is proposed.  相似文献   

19.
The taxonomic status of a bacterium, strain NCCP-246T, isolated from rhizosphere of Vigna mungo, was determined using a polyphasic taxonomic approach. The strain NCCP-246T can grow at 16–37 °C (optimum 32 °C), at pH ranges of 6–8 (optimum growth occurs at pH 7) and in 0–4 % (w/v) NaCl. Phylogenetic analysis based upon on 16S rRNA gene sequence comparison revealed that strain NCCP-246T belonged to genus Sphingobacterium. Strain NCCP-246T showed highest similarity to the type strain of Sphingobacterium canadense CR11T (97.67 %) and less than 97 % with other species of the genus. The DNA–DNA relatedness value of strain NCCP-246T with S. canadense CR11T and Sphingobacterium thalpophilum JCM 21153T was 55 and 44.4 %, respectively. The chemotaxonomic data revealed the major menaquinone as MK-7 and dominant cellular fatty acids were summed feature 3 [C16:1 ω7c/C16:1 ω6c] (37.07 %), iso-C15:0 (28.03 %), C16:0 (11.85 %), C17:0 cyclo (8.84 %) and C14:0 (2.42 %). The G+C content of the strain was 39.2 mol%. On the basis of DNA–DNA hybridization, phylogenetic analyses, physiological and, biochemical data, strain NCCP-246T can be differentiated from the validly named members of genus Sphingobacterium and thus represents as a new species, for which the name, Sphingobacterium pakistanensis sp. nov. is proposed with the type strain NCCP-246T (= JCM18974 T = KCTC 23914T).  相似文献   

20.
An arsenite-oxidizing bacterium, strain S2-3HT, was isolated from arsenic-contaminated soil sample collected from Dantchaeng district, Suphanburi province, Thailand and was characterized based on polyphasic taxonomic study. The strain was observed to be a Gram-stain negative, aerobic, yellow pigmented, non-spore forming and rod-shaped bacterium. Major menaquinone was MK-6. Iso-C15:0, iso-C15:0 3OH, C16:1 ω7c/C16:1 ω6c, C16:0, iso-C17:0 3OH, and C16:0 3OH were the predominant cellular fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, unidentified phospholipids and unidentified aminophospholipids. The DNA G+C content was 37.0 mol%. Phylogenetic analysis using 16S rRNA sequence showed that strain S2-3HT is affiliated to the genus Flavobacterium, and is closely related to F. defluvii KCTC 12612T (97.0 %) and F. johnsoniae NBRC 14942T (97.0 %). The strain S2-3HT could be clearly distinguished from the related Flavobacterium species by its physiological and biochemical characteristics as well as its phylogenetic position and DNA–DNA relatedness. Therefore, the strain represents a novel species of the genus Flavobacterium, for which the name Flavobacterium arsenitoxidans sp. nov. (type strain S2-3HT = KCTC 22507T = NBRC 109607T = PCU 331T = TISTR 2238T) is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号