首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host specificity gauges the degree to which a parasite occurs in association with a single host species. The measure is indicative of properties of the host and parasite, as well as their ecological and co-evolutionary relationships. Host specificity is influenced by the behavior and ecology of both parasite and host. Where parasites are active, vagile and coupled with hosts whose behavior and ecology brings the parasite into contact with many potential hosts, the likelihood of host switching is increased, usually leading to lowered specificity. Bat flies are specialized, blood-feeding ectoparasites of bats worldwide. In the bat fly - bat system, numerous properties interrupt the linkage of parasite to host and should decrease specificity. For bat flies these include high levels of activity, proclivity to abandon a disturbed host, the ability to fly, and a life-history strategy that includes a pupal stage decoupled from the host. For bats these include rapid, frequent and wide-ranging flight, high species richness encouraging inter-specific encounters during foraging, roosting and reproductive events, the utilization of large, durable roosting structures that are often shared with other bat species, and utilization of common entrance/exit flyways. The biological and ecological characteristics of bats and flies should together facilitate interspecific host transfers and, over time, lead to non-specific host-parasite associations. Large surveys of Neotropical mammals and parasites, designed to eliminate artifactual host-to-host parasite transfers, unequivocally demonstrate the high host specificity of bat flies. High degrees of specificity are remarkable in light of myriad host and parasite characteristics that ought to break down such specificity. Although host-specific parasites often have limited dispersal capability, this is not the case for some groups, including active, mobile bat flies. Host specificity in parasites with high dispersal capability is likely related to adaptive constraints. Among these may be a reproductive filter selecting for specificity based on mate availability, and co-evolved immunocompatibility where parasites use the same or similar immune-signaling molecules as their hosts to avoid immunological surveillance and response.  相似文献   

2.
While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex‐specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite–disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex‐specific parasite–disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long‐term population health and survival.  相似文献   

3.
Parasites represent a large fraction of the world's biodiversity. They control host population sizes and contribute to ecosystem functioning. However, surveys on species diversity rarely include parasitic species. Bats often present traits favoring parasite diversity, such as large home ranges, long life spans, and large colonies. The most conspicuous bat parasites are the highly host-specific, blood-sucking bat flies (Diptera: Streblidae, Nycteribiidae). Recent studies have found a direct effect of habitat alteration on the abundance of bat species. We expected, therefore, that changes in the host community in response to anthropogenic habitat modification will also result in changes in the associated parasite community. We captured bats in three different habitats in Central Panama between 2013 and 2015. We recorded information on prevalence and intensity of bat fly parasitization of the seven most commonly captured bat species. Prevalence and intensity were both significantly influenced by roost type, abundance, and host sex and age. We found that habitat variables and matrix type significantly influenced the prevalence and intensity of parasitization, while the direction of the responses was host species- and parasite species-specific. In general, roosting conditions and behavior of host bats appear to be fundamental in explaining changes in prevalence and intensity of parasitization between different habitat types, as bat flies are bound to the roost during their reproductive cycle. Habitat alterations affect next to the host community composition also the availability of possible roost structures as well as microclimatic conditions, which all three reflect in parasitization.  相似文献   

4.
Reckardt K  Kerth G 《Oecologia》2007,154(3):581-588
Ectoparasites of vertebrates often spend part of their life cycle in their hosts’ home. Consequently, hosts should take into account the parasite infestation of a site when selecting where to live. In a field study, we investigated whether colonial female Bechstein’s bats (Myotis bechsteinii) adapt their roosting behaviour to the life cycle of the bat fly Basilia nana in order to decrease their contact with infective stages of this parasite. B. nana imagoes live permanently on the bat’s body but deposit puparia in the bat’s roosts. The flies metamorphose independently in the roosts, but after metamorphosis emerge only in the presence of a potential host. In a field experiment, the bats preferred non-contagious to contagious day-roosts and hence were able to detect either the parasite load of roosts or some correlate with infestation, such as bat droppings. In addition, 9 years of observational data on the natural roosting behaviour of female Bechstein’s bats indicate that the bats largely avoid re-occupying roosts when highly contagious puparia are likely to be present as a result of previous occupations of the roosts by the bat colony. Our results indicate that the females adapted their roosting behaviour to the age-dependent contagiousness (emergence probability) of the puparia. However, some infested roosts were re-occupied, which we assume was because these roosts provided advantages to the bats (e.g. a beneficial microclimate) that outweighed the negative effects associated with bat fly infestation. We suggest that roost selection in Bechstein’s bats is the outcome of a trade-off between the costs of parasite infestation and beneficial roost qualities.  相似文献   

5.
Streblidae and Nycteribiidae are families of bloodsucking flies that parasitize bats exclusively. We studied the community of these flies in a Cerrado area in the Central-West Brazil. We captured 708 bats over 17 nights from October 2012 to March 2013. Forty-five per cent of the hosts were parasitized by 836 specimens of bat flies of 22 species. The most abundant flies were Trichobius joblingi on Carollia perspicillata, followed by Megistopoda aranea on Artibeus planirostris, and Strebla guajiro on C. perspicillata. All bat flies showed a high level of specificity for their hosts. Trichobius joblingi was the bat fly with the highest prevalence (80%) and mean intensity of infestation (3.5) on hosts with a representative sample size (n > 20). This result is likely related to the type of roosting (cavity) used by C. perspicillata, primary host of this fly species. Anoura caudifer hosted the largest infracommunities (n = 7). However, most bats were parasitized by a single fly species, suggesting a pattern in infestations. The aggregation index was high, indicating an unequal occurrence in parasite infestations. The majority of hosts were infested by few or no flies and few hosts were highly infested, showing a negative binomial distribution.  相似文献   

6.
We examined the structure of ectoparasitic bat fly infestations on 31 well‐sampled bat species, representing 4 Neotropical families. Sample sizes varied from 22 to 1057 bats per species, and bat species were infested by 4 to 27 bat fly species. Individual bats supported smaller infracommunities (the set of parasites co‐occurring on an individual host), ranging from 1 to 5 fly species in size, and no bat species had more than 6 bat fly species characteristically associated with it (its primary fly species). Nestedness analyses used system temperature (BINMATNEST algorithm) because it is particularly well‐suited for analysis of interaction networks, where parasite records may be nested among hosts and host individuals simultaneously nested among parasites. Most species exhibited very low system temperatures (mean 3.14°; range 0.14–12.28°). Simulations showed that nested structure for all 31 species was significantly stronger than simulated values under 2 of the 3 null hypotheses, and about half the species were also nested under the more stringent conditions of the third null hypothesis. Yet this structure disappears when analyses are restricted to “primary” associations of fly species (flies on their customary host species), which exclude records thought to be atypical, transient, or potential contaminants. Despite comprising a small fraction of total parasite records, such anomalies represent a considerable part of the statistical state‐space, offering the illusion of significant ecological structure. Only well understood and well documented systems can make distinctions between primary and other occurrence records. Generally, nestedness appears best developed in host‐parasite systems where infestations are long‐term and accumulate over time. Dynamic, short‐term infestations by highly mobile parasites like bat flies may appear to be nested, but such structure is better understood in terms of host specificity and accidental occurrences than in terms of prevalence, persistence, or hierarchical niche relations of the flies.  相似文献   

7.
Individual-based networks provide the building blocks for community-level networks. However, network studies of bats and their parasites have focused only on the species level. Intrapopulation variation may allow certain host individuals to play important roles in the dynamics of the parasites. Therefore, we evaluated how the variation in host sex, body size, ectoparasite abundance and co-occurrence configure individual-based networks of the lesser bulldog bat Noctilio albiventris and bat flies. We expected bat individuals with greater body mass and forearms acting as the core in the network. We also expected males to play a more important role in the network. We sampled a network of N. albiventris bat individuals and their bat flies to describe the structure of an antagonistic individual-based network. We aimed to identify the most relevant bat individuals in the network, focusing on the implications inherent to each of the following approaches: (i) core-periphery organization; (ii) modularity; (iii) species level metrics; and (iv) the main ecological driver of bat individual roles in the network, using niche-based predictors (body mass, forearm and sex). We showed that a network of N. albiventris individuals and their bat flies had low modularity containing a persistent nucleus of individuals and bat flies with well-established interactions. Male individuals with greater body mass played an important role in the network, while for females neither mass nor forearm length were important predictors of their role in the network. Finally, individuals with a high abundance of Paradyschiria parvula played a core role. These results provide an alternative perspective to understand the patterns and mechanisms of interspecific interactions between parasites on the host, as well as sex-biased parasitism.  相似文献   

8.
The aim of this study was to explore the diversity of ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies (Diptera, Hippoboscoidea) as hosts. Bat flies themselves live as ectoparasites on the fur and wing membranes of bats (Mammalia, Chiroptera); hence this is a tripartite parasite system. Here, we collected bats, bat flies, and Laboulbeniales, and conducted phylogenetic analyses of Laboulbeniales to contrast morphology with ribosomal sequence data. Parasitism of bat flies by Laboulbeniales arose at least three times independently, once in the Eastern Hemisphere (Arthrorhynchus) and twice in the Western Hemisphere (Gloeandromyces, Nycteromyces). We hypothesize that the genera Arthrorhynchus and Nycteromyces evolved independently from lineages of ectoparasites of true bugs (Hemiptera). We assessed phylogenetic diversity of the genus Gloeandromyces by considering the LSU rDNA region. Phenotypic plasticity and position‐induced morphological adaptations go hand in hand. Different morphotypes belong to the same phylogenetic species. Two species, G. pageanus and G. streblae, show divergence by host utilization. In our assessment of coevolution, we only observe congruence between the Old World clades of bat flies and Laboulbeniales. The other associations are the result of the roosting ecology of the bat hosts. This study has considerably increased our knowledge about bats and their associated ectoparasites and shown the necessity of including molecular data in Laboulbeniales taxonomy.  相似文献   

9.
One species of parasitic bug (Hemiptera : Cimicidae), 3 species of fleas (Siphonaptera: Ischnopsyllidae), and 2 species of parasitic flies (Diptera : Nycteribiidae) were collected from 9 species of bats (Chiroptera : Vespertilionidae) in southern interior and northeastern British Columbia, Canada. Female bats that return daily to maternity roosts were more frequently infested with both cimicids and ischnopsyllids than were male bats. Some differences in ectoparasite infestation can be attributed to differences in roosting behavior of the host. New national records for 2 parasite species, and 8 new host records are established for Canada.  相似文献   

10.
Robert Poulin  Klaus Rohde 《Oecologia》1997,110(2):278-283
Parasite communities are the product of acquisitions and losses of parasite species during the evolutionary history of their host. When comparing the parasite communities of different host species to assess the role of ecological variables as determinants of parasite species richness, a correction must be made for the possible phylogenetic inheritance of parasites from ancestral hosts independent of host ecology. We performed a comparative analysis of the metazoan ectoparasite communities on the heads and gills of 111 species of marine fish. The influences of host body size, host schooling behaviour and water temperature were tested after controlling for both sampling and phylogenetic effects. Overall, water temperature correlated positively with both parasite species richness and abundance, whereas fish size only correlated with parasite abundance. The correlation across all fish species between water temperature and parasite species richness was dependent on an outlier point. The results, however, generally held when fish from different biogeographical areas (Pacific and Atlantic) were analysed separately. In all analyses, parasite species richness always correlated strongly with parasite abundance. There was no evidence that schooling fish taxa harboured richer or more abundant ectoparasite communities than their non-schooling sister taxa, possibly because of the small number of contrasts available for that test. Overall, whereas both water temperature and host size affect the number of parasite individuals that can be harboured by a fish, only temperature appears important as a determinant of ectoparasite community richness. Received: 30 May 1996 / Accepted: 23 October 1996  相似文献   

11.
We studied the deposition of pupae of the winged bat fly Trichobius sp. (caecus group; Diptera), an ectoparasite of Natalus stramineus (Chiroptera, Natalidae), in a natural cave in Tamaulipas, Mexico. For the first time, we show a strong spatial segregation of populations of a streblid bat fly at different stages of development. Using molecular techniques we were able to match developmental stages to adults. Only 5 pupae were present in the main bat roosts. The overwhelming majority occurred exclusively in the bat flyway passages at a considerable distance from roosting bats. Pupal density corresponded positively with the average flight height of bats in the cave passage. Taken together, observations suggest that these ectoparasites must actively seek out their hosts by moving onto passing or roosting bats. The scarceness of pupae in the main roost may be dictated by environmental constraints for their development. The estimated population of viable pupae far exceeds the population of imagoes on the bats, and predation on adults by spiders is common.  相似文献   

12.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

13.
Karsten Reckardt  Gerald Kerth 《Oikos》2009,118(2):183-190
In a two-year field study, we analyzed the distribution of two hematophagous ectoparasites, the bat fly Basilia nana and the wing mite Spinturnix bechsteini , within and among 14 female colonies and among 26 solitary male Bechstein's bats Myotis bechsteinii . Our goal was to investigate whether differences in the transmission mode of the parasites, which result from differences in their life cycle, affect their distribution between host colonies and among host individuals within colonies. Bat flies deposit puparia in bat roosts, allowing for the transmission of hatched flies via successively shared roosts, independent of body contact between hosts or of hosts occupying a roost at the same time. In contrast, wing mites stay on the bat's body and are transmitted exclusively by contact of bats that roost together. As expected in cases of higher inter-colony transmissibility, bat flies were more prevalent among the demographically isolated Bechstein's bat colonies and among solitary male bats, as compared to wing mites. Moreover, the prevalence and density of wing mites, but not of bat flies, was positively correlated with colony size, as expected in cases of low inter-colony transmissibility. Within colonies, bat flies showed higher abundance on host individuals in good body condition, which are likely to have high nutritional status and strong immunity. Wing mites showed higher abundance on hosts in medium body condition and on reproductive females and juveniles, which are likely to have relatively weak immunity. We suggest that the observed infestation patterns within host colonies reflect different host choice strategies of bat flies and wing mites, which may result from differences in their inter-colony transmissibility. Our data also indicate that infestation with wing mites, but not with bat flies, might be a cost of sociality in Bechstein's bats.  相似文献   

14.
Bordes F  Morand S 《Parasitology》2008,135(14):1701-1705
Studies investigating parasite diversity have shown substantial geographical variation in parasite species richness. Most of these studies have, however, adopted a local scale approach, which may have masked more general patterns. Recent studies have shown that ectoparasite species richness in mammals seems highly repeatable among populations of the same mammal host species at a regional scale. In light of these new studies we have reinvestigated the case of parasitic helminths by using a large data set of parasites from mammal populations in 3 continents. We collected homogeneous data and demonstrated that helminth species richness is highly repeatable in mammals at a regional scale. Our results highlight the strong influence of host identity in parasite species richness and call for future research linking helminth species found in a given host to its ecology, immune defences and potential energetic trade-offs.  相似文献   

15.
High host specificity of obligate ectoparasites   总被引:1,自引:0,他引:1  
Abstract.  1. Host specificity is the degree to which a parasite species occurs in association with a host species.
2. The degree to which obligate ectoparasites are host specific has been debated, but effects of sampling contamination were usually not addressed. Data from a controlled mammal–ectoparasite survey were used to assess host specificity of an obligate group of ectoparasites – streblid bat flies.
3. Host–parasite associations were categorised as primary or non-primary. Non-primary host associations were evaluated against primary associations via proportional comparison.
4. Results indicate that host specificity was high, exceeding previous reports. Natural host transfers were rare.
5. Non-primary host associations were almost completely explained by disturbance transfers during sampling of the host or by contamination upon sampling the parasite. These conclusions likely hold for other taxa of obligate parasites.  相似文献   

16.
This note examines the effect of parasitism on host size, the preference of the parasite for a specific host body area, and the seasonal abundance for the 3 most abundant bat flies (i.e., Trichobius joblingi Wenzel, a parasite of the bat Carollia perspicillata [Linnaeus], and Aspidoptera falcata Wenzel and Megistopoda proxima [Séguy], parasites on Sturnira lilium [Geoffroy]). Trichobius joblingi and A. falcata are moderately dorsoventrally flattened and were collected on the wing membranes of their hosts, and M. proxima is moderately laterally compressed, has long, thin hind legs, and was collected in the body fur of the host. These 3 parasites also showed distinct seasonal patterns. There was a significant negative correlation between the simultaneous occurrence of A. falcata and M. proxima on the host. Parasitism by M. proxima was correlated with a significant weight loss in male S. lilium, which may reflect the large size, high activity, and constant feeding of this parasite, thereby causing a significant negative effect on the host. Sex ratios favoring male flies could be explained by the tendency of female flies to leave the host immediately before the bat leaves the shelter in search for food or immediately after bats are collected but could also be a consequence of higher mortality among females, especially gravid ones. Finally, collecting may have influenced the skewed sex ratio because male flies, being more active, were more evident to the collector.  相似文献   

17.
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non‐infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria‐like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild‐caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.  相似文献   

18.
Ectoparasitism in bats seems to be influenced strongly by the type of roost preferred by the hosts, and group size; however, the effect of habitat loss and fragmentation on the prevalence of ectoparasites in bats has scarcely been studied. In northeastern Yucatan, Mexico, we estimated the prevalence of infestation by Streblidae flies in three phyllostomid bat species with different roost preferences (caves, trees, or both) in two types of landscape matrices (tropical semi‐deciduous forest and man‐made pastures) that differed in area of forest cover and the number of forest fragments. Habitat fragmentation and the presence of a contrasting matrix may limit the availability of roosts (trees) and the movement of bats across the landscape. Accordingly, we hypothesized higher prevalence of Streblidae infestation in the pasture matrix and in the group of bats that roost in trees. Bat abundance was higher in the pasture matrix; however, the prevalence of infestation was significantly higher in the continuous forest matrix and in bats that roosted in caves. The prevalence of some species of Streblidae was affected by habitat fragmentation in species that roost in caves, such as Desmodus rotundus, as well as those using foliage and caves, such as Artibeus jamaicensis. Our results provide evidence that some species of Streblidae may respond differently to habitat fragmentation than their hosts, generating changes to bat‐ectoparasite interactions in fragmented areas. Environmental variations involving roosts, not evaluated in this study, may influence our results, since these factors affect ectoparasite abundance and reproduction.  相似文献   

19.
扁颅蝠与褐扁颅蝠的集群结构   总被引:4,自引:0,他引:4  
2001—2002年在广西宁明县和龙州县利用直接观察、捕捉测量(共捕到197群蝙蝠,全捕180群)和标记重捕法(标记了31群的101只扁颅蝠,重捕到36只)比较研究了扁颅蝠(tylonycteris pachypusa)与褐扁颅蝠(T.robustula)的集群结构。结果发现:扁颅蝠与褐扁颅蝠主要栖宿在刺竹(Bambusa stenostachya)的竹筒内,通过竹筒上的裂缝进出。扁颅蝠栖宿的竹筒长平均为27.7cm,外围直径平均为23.6cm;褐扁颅蝠的分别为28.3cm和23.8cm。扁颅蝠栖宿群大小为1—24只,褐扁颅蝠栖宿群大小为1—13只;2种蝙蝠的栖宿群中皆为独居所占比例最大(扁颅蝠为22.30%,褐扁颅蝠为40.63%),2只所占比例次之(分别为14.87%和18.75%),其它大小类型呈不规则变化。扁颅蝠栖宿群的性别组成,以雌雄混居最常见(占54.72%),其次为独居雄性(占20.95%),而褐扁颅蝠栖宿群雌雄混居群与独居雄性所占比例相当(均为40.63%)。2种蝙蝠的雄性趋向于独居,而雌性趋向于群居。扁颅蝠与褐扁颅蝠可以栖宿在同一片竹林内,并且可以在不同时间轮流使用同一个栖宿竹筒,但2种蝙蝠从未共栖于同一个竹筒内。另外,标记重捕扁颅蝠发现:扁颅蝠经常变换栖宿竹筒(栖宿竹筒不固定);同时栖宿群之间经常发生个体交换[动物学报50(3):326—333.2004]。  相似文献   

20.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号