首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Day/night differences in the removal rate of phytoplankton can occur as a result of increased copepod grazing rates at certain times of the day and diel vertical migration of animals. We conducted shipboard grazing experiments and fine-scale vertical zooplankton sampling to resolve these behaviors. Day/night feeding differences were compared in the center of several warm-core Gulf Stream rings, under conditions of no lateral water mass exchange, in the mesohaline portion of Chesapeake Bay and when following drogues in the Chesapeake Bay plume. Day/night variations in copepod biomass in the surface mixed layer were greater in neritic waters as compared to the open ocean stations. Day/night differences in weight-specific copepod filtration rates varied less than biomass. At the neritic stations copepod grazing was often higher at night, whereas at the oceanic stations day/night grazing rates were similar or daytime grazing rates were highest. The night/day ratio of zooplankton grazing impact on the phytoplankton community (the product of zooplankton biomass and their weight-specific grazing rate) averaged 4.8 in the Chesapeake Bay plume and 1.6 in warm-core Gulf Stream rings. Our results suggest that at lower food levels, there often are less day/night differences in the removal rate of phytoplankton by the copepod community.  相似文献   

2.
Based on a continuous 20-year data base of monthly samplingin Chesapeake Bay and tidal regions of its major tributaries,1454 phytoplankton taxa have been identified in these waters.They represent a diverse assemblage of species with a dominantdiatom flora throughout the year, in addition to large seasonalrepresentation by chlorophytes, cyanobacteria, cryptophytesand dinoflagellates. Included among this flora were 34 potentialharmful or toxin producing species. The phytoplankton compositionsassociated with the seasonal successional patterns are discussed,in addition to characterizing the dominant floral relationships,with comparison to early composition records within the Bay.Several of the present day most common taxa were similar tothose reported in sediment cores from the Bay dating to periodsprior to European settlement. Comparison with collections made8 decades ago (1916–1922) within Chesapeake Bay indicatedseveral of the same dominant flora remain dominant today; however,their cell concentrations are now significantly greater alongwith an increased diversity of species compared with these earlierstudies.  相似文献   

3.
The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.
The relationships between invasion pressure, post-transport inoculant survival, and regional susceptibility to invasion are poorly understood. In marine ecosystems, the movement and release of ballast water from ocean-going ships provides a model system by which to examine the interplay among these factors. One of the largest estuaries in North America, the Chesapeake Bay, receives tremendous amounts of foreign ballast water annually and thus should be at high invasion risk. To date, however, few introductions in Chesapeake Bay have been attributed to ballast release. To understand better the dynamics of this invasion process, we (1) characterized and quantified the biota arriving to Chesapeake Bay in foreign ballast water, (2) compared temperatures and salinities of ballast water and harbor water in upper Chesapeake Bay, and (3) tested experimentally survival of organisms collected from ballast water in temperatures and salinities characteristic of the region. From 1993 to 1994, we sampled planktonic and benthic organisms from 60 foreign vessels arriving to Chesapeake Bay. Our data show that the estuary is being inoculated by a diverse assemblage of aquatic organisms from around the world. Furthermore, the short transit time (15d) for most vessels ensured that substantial numbers of larval and post-larval organisms were being deballasted alive. Most of the ballast water discharged into the upper Chesapeake Bay, however, was significantly higher in salinity (>20) than that of the receiving harbor. In laboratory tolerance experiments, ballast water organisms perished under such conditions. Thus, a mismatch in physical conditions between donor and receiver regions may explain the dearth of invasions in the upper Bay. It is likely that the lower Chesapeake Bay, which is more saline, remains at higher risk to ballast water invasion. Recognition of such intraregional differences should allow more focused predictions for monitoring and management.  相似文献   

5.
Most larger individuals of migratory striped bass Morone saxatilis from the two major Atlantic coast stocks, the Chesapeake Bay and Hudson River, appear to winter in mid‐Atlantic coastal waters. But it is not known whether they exhibit differential wintertime distributions in accordance with the latitudinal differences in locations of these two estuaries. Mixed‐stock analyses were conducted based on mitochondrial DNA and nuclear DNA genotypic frequencies on wintertime collections of striped bass from coastal waters. No significant differences (P > 0.05) were seen in the proportions of striped bass from the two stocks between collections made from the Delaware Bay mouth and Cape Hatteras in 1997. However, there was a substantially higher Hudson contribution to a 1995 collection from coastal New Jersey (0.349, SD = 0.136) than to the combined 1997 Delaware Bay mouth and Cape Hatteras collection (0.157, SD = 0.072), suggesting this question deserves further study. Additionally, use of the original four reference samples from Chesapeake Bay tributaries (Choptank, Potomac, Rappahannock, Upper Bay) proved adequate alone in characterizing the Chesapeake Bay stock in simulations in which additional tributary collections (Nanticoke, Patuxent, Pocomoke) were added.  相似文献   

6.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

7.
Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 10(1) to 10(4), but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty-nine mtDNA nucleotide-substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2-5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide-substitution haplotypes and length-variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once-glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five-region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.  相似文献   

8.
A natural phytoplankton assemblage from Grand Traverse Bay, Lake Michigan, was treated with factorial enrichments of nitrate and phosphorus, with maintained nutrient concentrations ranging from 5 to 60 μg total soluble phosphorus liter−1 and 0.225 to 1.12 mg nitrate-nitrogen liter−1.One container was spiked with added vitamins, a chelator, and trace metals. The assemblage response was monitored at the species level. Significant differences in growth rates as a function of nutrient enrichment were detected at both the division and the species levels. Growth rates associated with the various levels of enrichment are reported for several diatom taxa. Many of the diatom taxa exhibited highly significant (P < 0.01) increases in growth rate after phosphorus enrichment, with the largest effects occurring between 5 and 15 μg total soluble phosphorus liter−1. Significant (P < 0.05) N effects were also observed, and the nature of these effects was found to be taxon-specific. Taxa also showed significant changes in percent composition, due both to time and to nutrient enrichment, indicating a substantial heterogeneity in response at the species level. Experimentally induced population changes were qualitatively similar to those observed in regions of the Great Lakes which have undergone anthropogenic eutrophication. Contribution No. 222 of the Great Lakes Research Division, University of Michigan. Work was supported by funds from the Michigan Sea Grant Program and the Environmental Protection Agency. Contribution No. 222 of the Great Lakes Research Division, University of Michigan. Work was supported by funds from the Michigan Sea Grant Program and the Environmental Protection Agency.  相似文献   

9.
胶州湾浮游植物水华期群落结构特征   总被引:15,自引:5,他引:10  
刘东艳  孙军  张利永 《应用生态学报》2003,14(11):1963-1966
根据2001年8月对胶州湾海域进行的为期2d的大面积调查资料,对浮游植物的群落结构进行了初步研究,结果表明,浮游植物群落主要由沿岸暖水性种类组成,以硅藻为主,共34种;还有少量的甲藻7种和绿藻1种,湾中央水域出现的物种数最多,为37种;湾边缘最少,仅出现10种,细胞数量的密集区出现在湾东部边缘水域,最高值为6.96×108个cell·m-3;低值区出现在湾口,最低值仅为3.18×106个cell·m-3调查期间浮游植物的物种多样性及其均匀度的最低值均出现在湾东部边缘水域;高值区出现在湾口和湾中央水域,胶州湾海域水团运动和水体富营养化程度是影响浮游植物群落分布的主要环境因素。  相似文献   

10.
To determine longitudinal changes in phytoplankton composition and biomass in the Warnow River (Germany), single water parcels were followed during their downstream transport in August and October 1996 and April 1997. In summer, the phytoplankton assemblage was dominated by centric diatom and cyanobacteria species. Stephanodiscus hantzschii, Pseudanabaena limnetica, Planktothrix agardhii and Aulacoseira granulata var. angustissima were the most frequent species. In autumn, small centric diatoms dominated the whole river course. Irrespective of the season, in the fluvial lakes of the upper river, a substantial increase of phytoplankton biomass was observed. Shallow upstream river stretches were associated with large biomass losses. In the deep, slow flowing lower regions, total biomass remained constant. Longitudinal changes in biomass reflected downstream variations in flow velocity and river morphology. Cyanobacteria, cryptophytes and diatom species were subjected to large biomass losses along fast flowing, shallow river sections, whereas chlorophytes were favoured. Diatoms and cryptophytes benefited from low flow velocity and increased water depth in the downstream river. Changes in water depth and flow velocity have been found as key factors that cause the longitudinal differences in phytoplankton composition and biomass in small rivers.  相似文献   

11.
In 1999 the marine isopod Synidotea laevidorsalis (Miers 1881), indigenous to the northwest Pacific, was first documented in Delaware Bay, USA. We monitored weekly recruitment of this isopod and several other motile species in the Maurice River, a tributary of Delaware Bay. A spatial survey was also conducted. Abundance of S. laevidorsalis varied seasonally but overwhelmingly dominated other co-occurring species by an order of magnitude or more throughout most of the year. Isopod abundance increased through the summer of 2004 and peaked in September, coincident with the passing of Hurricane Ivan. Field observations documented large populations, frequently associated with pilings and buoy lines, throughout Delaware Bay in salinities of 4 through 22 ppt. The dramatic abundance of this isopod indicates that there is considerable potential for altering community structure. This isopod has yet to be observed along the Atlantic Coast of New Jersey or in Chesapeake Bay, but it has been reported near Charleston, SC.  相似文献   

12.
王迪  陈丕茂  逯晶晶  马媛 《生态学杂志》2013,24(6):1686-1692
2008-2009年对钦州湾及附近海域进行4个季节航次的浮游植物调查,共鉴定出浮游植物131种,其中硅藻种数最多,达101种,占浮游植物总种数的77.1%;甲藻次之,23种;其他种类3门7种.浮游植物以广温性种和暖水性种为主.总种类数的季节变化与硅藻种类数均为春季最低,夏、秋、冬依次增加,冬季最高.各季节浮游植物丰度为232.28×104~977.0×104 cell·m-3,平均为558.57×104 cell·m-3;各季节浮游植物丰度呈现夏、春、冬和秋依次减少的趋势;各区域浮游植物丰度四季均为由内湾至外湾先升高、到湾外逐渐降低的趋势,但在夏季其高丰度区由外湾南移至湾口附近.浮游植物群落的Shannon多样性指数和均匀度指数平均值分别为3.18和0.63,多样性水平较高.浮游植物丰度与温度、盐度、溶解性无机氮及活性磷酸盐的相关关系因季节而变化.  相似文献   

13.
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960–1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976–1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores.The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow.  相似文献   

14.
Several investigations exist which use planktonic communities as indicators of water quality in Jamaican and Caribbean Bays, however, few are conducted before there are obvious effects of eutrophication. Therefore, most of our ‘baseline’ data are for bays already severely affected by pollution. This study was conducted to assess water quality in Discovery Bay, Jamaica, before there were severe signs of eutrophication. The bay was monitored over a 12-month period (October 1995–September 1996) using 10 stations. Physicochemical data indicated a well mixed upper 5 m of water column, below which discontinuities in temperature/salinity profiles indicated the influence of colder, more saline waters associated with deep offshore currents. Physicochemical variables were within the range for oligotrophic systems with a tendency towards mesotrophic in localized areas close to the shoreline. Signs of anthropogenic stress were associated with the eastern, southwestern and western sections of the bay. Of the over 120 species of phytoplankton found in the waters of Discovery Bay, most were neritic/oceanic and diatoms dominated while 11 were found to be potentially harmful species. While these harmful species occurred at all stations they occurred most frequently at stations on the eastern side of the bay. About 107 zooplankton species were identified, 52 of which were copepods. The species also represented a mix of neritic and oceanic taxa and mean abundances for the area ranged from 1077 m−3 at the mouth of the bay to 3794 m−3 close to the south shore (station 6). Generally stations closest to shore had greater zooplankton abundances than centrally located bay stations and stations close to oceanic influence. Acartia tonsa and Lucifer faxoni showed greatest densities at shoreline areas of the bay while Oithona plumifera, Undinula vulgaris and Temora stylifera were important at stations closest to oceanic influences. These species were thus considered as indicators of these different areas within the bay. From physicochemical data and the planktonic assemblage, Discovery Bay cannot be considered polluted, it is still more accurately classified as generally pristine with mesotrophic zones in the eastern and southeastern sections of the bay. These data therefore provide a real baseline of conditions for similar tropical coastal embayments.  相似文献   

15.
Perkinsus chesapeaki is reported from stout razor clams Tagelus plebeius in Delaware Bay, extending the known range of P. chesapeaki north of Chesapeake Bay. P. marinus, which causes dermo disease, is prevalent in cultured and wild oysters at this site, but was not detected in T. plebeius. Evidence for the presence of disseminated neoplasia, also reported from Chesapeake Bay, was equivocal. Although P. chesapeaki infections were associated with mortality events, light infection intensities and a general lack of histopathological evidence of disease limit inferences about a causal relationship. A comparison of Ray's fluid thioglycollate medium (RFTM)-based and PCR-based detection assays highlight differences in detection capabilities related to the quantity and type of tissue processed rather than assay sensitivity per se, a point that should be considered when surveying populations for disease prevalence. Investigators are further cautioned to use care when applying and interpreting diagnostic assays when used with novel species.  相似文献   

16.
Factors affecting the distribution of juvenile estuarine and inshore fish   总被引:20,自引:0,他引:20  
The differential distributions of juveniles and adults of 25 species of teleost were investigated and compared from four habitat types in sub-tropical Moreton Bay, Queensland. The aim of the study was to identify factors influencing the distribution of juveniles, particularly the species which enter estuaries. The following habitats were sampled: a shallow, sheltered tidal estuary (Caboolture); a shallow, exposed bay with muddy substrates (Deception Bay); an exposed area of sandy substrates and seagrass (Toorbol Point) and a sheltered oceanic site with sandy substrates and seagrass (Kooringal). Data on diet, spawning seasons and recruitment periods of fry are presented together with measurements of salinity, temperature and turbidity. Species entering estuaries recruited mainly in summer (rainy season). The possible preference of juveniles for calm water, the roles of food and predation pressure, the effects of salinity, temperature and turbidity are discussed in relation to the biology and distribution of the fish. Salinity and temperature were probably not important to most juvenile fish. The effects of calm water, suitable food and predators vary according to species. Although all juveniles studied preferred shallow water, in the case of those entering estuaries, turbidity was the single most important factor. Juveniles of the same species occurred in both the estuary and Deception Bay where abiotic and biotic factors other than turbidity were different. During summer, turbidity gradients extended from east to west in Moreton Bay with highest turbidities in Caboolture estuary and Deception Bay. In winter, turbidities throughout Moreton Bay were low and relatively uniform. At this time many of the ‘clear water’ species occurred in Deception Bay. The influence of high turbidity on fish may be linked to reduced predation pressure and perhaps food supply in shallow water. Turbidity gradients in summer may aid fry in locating estuarine nursery grounds. It is apparent however, that juveniles of many species are probably not attracted to estuaries per se but to shallow turbid areas.  相似文献   

17.
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.  相似文献   

18.
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.  相似文献   

19.
Compared to freshwater and the open ocean, less is known about bacterioplankton community structure and spatiotemporal dynamics in estuaries, particularly those with long residence times. The Chesapeake Bay is the largest estuary in the United States, but despite its ecological and economic significance, little is known about its microbial community composition. A rapid screening approach, ITS (internal transcribed spacer)-LH (length heterogeneity)-PCR, was used to screen six rRNA operon (16S rRNA-ITS-23S rRNA) clone libraries constructed from bacterioplankton collected in three distinct regions of the Chesapeake Bay over two seasons. The natural length variation of the 16S-23S rRNA gene ITS region, as well as the presence and location of tRNA-alanine coding regions within the ITS, was determined for 576 clones. Clones representing unique ITS-LH-PCR sizes were sequenced and identified. Dramatic shifts in bacterial composition (changes within subgroups or clades) were observed for the Alphaproteobacteria (Roseobacter clade, SAR11), Cyanobacteria (Synechococcus), and Actinobacteria, suggesting strong seasonal variation within these taxonomic groups. Despite large gradients in salinity and phytoplankton parameters, a remarkably homogeneous bacterioplankton community was observed in the bay in each season. Stronger seasonal, rather than spatial, variation of the bacterioplankton population was also supported by denaturing gradient gel electrophoresis and LH-PCR analyses, indicating that environmental parameters with stronger seasonal, rather than regional, dynamics, such as temperature, might determine bacterioplankton community composition in the Chesapeake Bay.  相似文献   

20.
The uptake of inorganic nutrients by heterotrophic bacteria   总被引:25,自引:3,他引:22  
It is now well known that heterotrophic bacteria account for a large portion of total uptake of both phosphate (60% median) and ammonium (30% median) in freshwaters and marine environments. Less clear are the factors controlling relative uptake by bacteria, and the consequences of this uptake on the plankton community and biogeochemical processes, e.g., new production. Some of the variation in reported inorganic nutrient uptake by bacteria is undoubtedly due to methodological problems, but even so, uptake would be expected to vary because of variation in several parameters, perhaps the most interesting being dissolved organic matter. Uptake of ammonium by bacteria is very low whereas uptake of dissolved free amino acids (DFAA) is high in eutrophic estuaries (the Delaware Bay and Chesapeake Bay). The concentrations and turnover of DFAA are insufficient, however, in oligotrophic oceans where bacteria turn to ammonium and nitrate, although the latter only as a last resort. I argue here that high uptake of dissolved organic carbon, which has been questioned, is necessary to balance the measured uptake of dissolved inorganic nitrogen (DIN) in seawater culture experiments. What is problematic is that this DIN uptake exceeds bacterial biomass production. One possibility is that bacteria excrete dissolved organic nitrogen (DON). A recent study offers some support for this hypothesis. Lysis by viruses would also release DON.While ammonium uptake by heterotrophic bacteria has been hypothesized to affect phytoplankton community structure, other impacts on the phytoplankton and biomass production (both total and new) are less clear and need further work. Also, even though bacteria account for a very large fraction of phosphate uptake, how this helps to structure the plankton community has not been examined. What is clear is that the interactions between bacterial and phytoplankton uptake of inorganic nutrients are more complicated than simple competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号