首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many coxsackievirus B isolates bind to human decay-accelerating factor (DAF) as well as to the coxsackievirus and adenovirus receptor (CAR). The first-described DAF-binding isolate, coxsackievirus B3 (CB3)-RD, was obtained during passage of the prototype strain CB3-Nancy on RD cells, which express DAF but very little CAR. CB3-RD binds to human DAF, whereas CB3-Nancy does not. To determine the molecular basis for the specific interaction of CB3-RD with DAF, we produced cDNA clones encoding both CB3-RD and CB3-Nancy and mutated each of the sites at which the RD and Nancy sequences diverged. We found that a single amino acid change, the replacement of a glutamate within VP3 (VP3-234E) with a glutamine residue (Q), conferred upon CB3-Nancy the capacity to bind DAF and to infect RD cells. Readaptation of molecularly cloned CB3-Nancy to RD cells selected for a new virus with the same VP3-234Q residue. In experiments with CB3-H3, another virus isolate that does not bind measurably to DAF, adaptation to RD cells resulted in a DAF-binding isolate with a single amino acid change within VP2 (VP2-138 N to D). Both VP3-234Q and VP2-138D were required for binding of CB3-RD to DAF. In the structure of the CB3-RD-DAF complex determined by cryo-electron microscopy, both VP3-234Q and VP2-138D are located at the contact site between the virus and DAF.  相似文献   

2.
Serial "blind" passages in human rhabdomyosarcoma (RD) cells of prototype viruses from each of the six immunotypes of the group B coxsackieviruses (CB) resulted in the isolation of intratypic variants of CB1, CB3, CB5, and CB6. Each variant virus strain acquired the capacity to agglutinate human erythrocytes and produce small plaques on HeLa cells, although their serological specificity remained unchanged. An alteration in VP1 mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was noted for CB3-RD. The CB3-RD variant was plaque purified on RD cells and studied for receptor interactions on both HeLa and RD cells. An attachment restriction appeared to exist for prototype CB3 on RD cells, whereas CB3-RD attached well to both cells. In attachment interference assays, HeLa cells saturated with CB3-RD blocked the attachment of CB3. In contrast, saturation of cells with CB1 (which shares a common receptor with parental CB3) failed to block the attachment of CB3-RD. This unidirectional receptor blockade suggested that a second site for the attachment of virions to receptors was acquired by the CB3-RD variant. Thus, more than one virus receptor specificity may be operative in the selection of host range virus mutants. The implications of this phenomenon as they may relate to pathogenesis are discussed.  相似文献   

3.
A 50-kilodalton receptor protein (Rp-a) for the group B coxsackieviruses (CB) was isolated in a virus-receptor complex from detergent-solubilized HeLa cells (J. E. Mapoles, D. L. Krah, and R. L. Crowell, J. Virol. 55:560-566, 1985). It was used as an immunogen for preparation of a mouse monoclonal antibody (RmcB) which protected HeLa cells and Buffalo green monkey kidney cells from infection by all six serotypes of CB. RmcB did not protect HeLa cells from infection by poliovirus, echovirus 6, or coxsackievirus A18. This monoclonal antibody differed in receptor epitope specificity from a previously isolated antibody (RmcA) (R. L. Crowell, A. K. Field, W. A. Schleif, W. L. Long, R. J. Colonno, J. E. Mapoles, and E. A. Emini, J. Virol. 57:438-445, 1986) which blocked receptors only for type 1 CB (CB1), CB3, CB5, and echovirus 6. RmcA and RmcB recognized two distinct saturable receptors on HeLa cells, designated HR2 and HR1, respectively. Human rhabdomyosarcoma (RD) cells have the HR2 receptor for CB3-RD (a variant of CB3), but lack the HR1 receptor for CB3. Therefore, RD cells were resistant to infection by CB3. Although binding of CB3-RD to the HR2 receptor on RD cells can lead to infection, binding of CB3-RD to the HR2 receptor on HeLa cells did not lead to infection. Apparently, both CB3 and CB3-RD use only the HR1 receptor for infection of HeLa cells. Thus, a given virus may use two distinct receptors to bind to cells when only one virus-receptor interaction leads to infection.  相似文献   

4.
BALB/c mice were immunized with HeLa cells, and their spleen cells were fused with myeloma cells to produce hybridomas. Initial screening of culture fluids from 800 fusion products in a cell protection assay against coxsackievirus B3 (CB3) and the CB3-RD virus variant yielded five presumptive monoclonal antibodies with three specificities: protection against CB3 on HeLa, protection against CB3-RD on rhabdomyosarcoma (RD) cells, and protection against both viruses on the respective cells. Only one of the monoclonal antibodies (with dual specificity) survived two subclonings and was studied in detail. The antibody was determined to have an immunoglobulin G2a isotype and protected cells by blockade of cellular receptors, since attachment of [35S]methionine-labeled CB3 was inhibited by greater than 90%. The monoclonal antibody protected HeLa cells against infection by CB1, CB3, CB5, echovirus 6, and coxsackievirus A21 and RD cells against CB1-RD, CB3-RD, and CB5-RD virus variants. The monoclonal antibody did not protect either cell type against 16 other immunotypes of picornaviruses. The monoclonal antibody produced only positive fluorescence on those cells which were protected against infection, and 125I-labeled antibody confirmed the specific binding to HeLa and RD cells. The results suggest that this monoclonal antibody possesses some of the receptor specificity of the group B coxsackieviruses.  相似文献   

5.
A coxsackievirus B3 (CB3) isolate adapted to growth in RD cells shows an alteration in cell tropism as a result of its capacity to bind a 70-kDa cell surface molecule expressed on these cells. We now show that this molecule is the complement regulatory protein, decay-accelerating factor (DAF) (CD55). Anti-DAF antibodies prevented CB3 attachment to the cell surface. Radiolabeled CB3 adapted to growth in RD cells bound to CHO cells transfected with human DAF, whereas CB3 (strain Nancy), the parental strain, did not bind to DAF transfectants. These results indicate that growth of CB3 in RD cells selected for a virus strain that uses DAF for cell surface attachment.  相似文献   

6.
Dienelactone hydrolase from Pseudomonas sp. strain B13.   总被引:6,自引:5,他引:1       下载免费PDF全文
Dienelactone hydrolase (EC 3.1.1.45) catalyzes the conversion of cis- or trans-4-carboxymethylenebut-2-en-4-olide (dienelactone) to maleylacetate. An approximately 24-fold purification from extracts of 3-chlorobenzoate-grown Pseudomonas sp. strain B13 yielded a homogeneous preparation of the enzyme. The purified enzyme crystallized readily and proved to be a monomer with a molecular weight of about 30,000. Each dienelactone hydrolase molecule contains two cysteinyl side chains. One of these was readily titrated by stoichiometric amounts of p-chloromercuribenzoate, resulting in inactivation of the enzyme; the inactivation could be reversed by the addition of dithiothreitol. The other cysteinyl side chain appeared to be protected in the native protein against chemical reaction with p-chloromercuribenzoate. The properties of sulfhydryl side chains in dienelactone hydrolase resembled those that have been characterized for bacterial 4-carboxymethylbut-3-en-4-olide (enol-lactone) hydrolases (EC 3.1.1.24), which also are monomers with molecular weights of about 30,000. The amino acid composition of the dienelactone hydrolase resembled the amino acid composition of enol-lactone hydrolase from Pseudomonas putida, and alignment of the NH2-terminal amino acid sequence of the dienelactone hydrolase with the corresponding sequence of an Acinetobacter calcoaceticus enol-lactone hydrolase revealed sequence identity at 8 of the 28 positions. These observations foster the hypothesis that the lactone hydrolases share a common ancestor. The lactone hydrolases differed in one significant property: the kcat of dienelactone hydrolase was 1,800 min-1, an order of magnitude below the kcat observed with enol-lactone hydrolases. The relatively low catalytic activity of dienelactone hydrolase may demand its production at the high levels observed for induced cultures of Pseudomonas sp. strain B13.  相似文献   

7.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

8.
Evolution of chlorocatechol catabolic pathways   总被引:15,自引:0,他引:15  
The aerobic bacterial degradation of chloroaromatic compounds often involves chlorosubstituted catechols as central intermediates. They are converted to 3-oxoadipate in a series of reactions similar to that for catechol catabolism and therefore designated as modifiedortho-cleavage pathway. Among the enzymes of this catabolic route, the chlorocatechol 1,2-dioxygenases are known to have a relaxed substrate specificity. In contrast, several chloromuconate cycloisomerases are more specific, and the dienelactone hydrolases of chlorocatechol catabolic pathways do not even convert the corresponding intermediate of catechol degradation, 3-oxoadipate enol-lactone. While the sequences of chlorocatechol 1,2-dioxygenases and chloromuconate cycloisomerases are very similar to those of catechol 1,2-dioxygenases and muconate cycloisomerases, respectively, the relationship between dienelactone hydrolases and 3-oxoadipate enol-lactone hydrolases is more distant. They seem to share an / hydrolase fold, but the sequences comprising the fold are quite dissimilar. Therefore, for chlorocatechol catabolism, dienelactone hydrolases might have been recruited from some other, preexisting pathway. Their relationship to dienelactone (hydrolases identified in 4-fluorobenzoate utilizing strains ofAlcaligenes andBurkholderia (Pseudomonas) cepacia is investigated). Sequence evidence suggests that the chlorocatechol catabolic operons of the plasmids pJP4, pAC27, and pP51 have been derived from a common precursor. The latter seems to have evolved for the purpose of halocatechol catabolism, and may be considerably older than the chemical industry.  相似文献   

9.
Glucose in the gut lumen activates gut endocrine cells to release 5-HT, glucagon-like peptide 1/2 (GLP-1/2), and glucose-dependent insulinotropic polypeptide (GIP), which act to change gastrointestinal function and regulate postprandial plasma glucose. There is evidence that both release and action of incretin hormones is reduced in type 2 diabetes (T2D). We measured cellular activation of enteroendocrine and enterochromaffin cells, enteric neurons, and vagal afferent neurons in response to intestinal glucose in a model of type 2 diabetes mellitus, the UCD-T2DM rat. Prediabetic (PD), recent-diabetic (RD, 2 wk postonset), and 3-mo diabetic (3MD) fasted UCD-T2DM rats were given an orogastric gavage of vehicle (water, 0.5 ml /100 g body wt) or glucose (330 μmol/100 g body wt); after 6 min tissue was removed and cellular activation was determined by immunohistochemistry for phosphorylated calcium calmodulin-dependent kinase II (pCaMKII). In PD rats, pCaMKII immunoreactivity was increased in duodenal 5-HT (P < 0.001), K (P < 0.01) and L (P < 0.01) cells in response to glucose; glucose-induced activation of all three cell types was significantly reduced in RD and 3MD compared with PD rats. Immunoreactivity for GLP-1, but not GIP, was significantly reduced in RD and 3MD compared with PD rats (P < 0.01). Administration of glucose significantly increased pCaMKII in enteric and vagal afferent neurons in PD rats; glucose-induced pCaMKII immunoreactivity was attenuated in enteric and vagal afferent neurons (P < 0.01, P < 0.001, respectively) in RD and 3MD. These data suggest that glucose sensing in enteroendocrine and enterochromaffin cells and activation of neural pathways is markedly impaired in UCD-T2DM rats.  相似文献   

10.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

11.

Dienelactone hydrolase, an α/β hydrolase enzyme, catalyzes the hydrolysis of dienelactone to maleylacetate, an intermediate for the Krebs cycle. Genome sequencing of the psychrophilic yeast, Glaciozyma antarctica predicted a putative open reading frame (ORF) for dienelactone hydrolase (GaDlh) with 52% sequence similarity to that from Coniophora puteana. Phylogenetic tree analysis showed that GaDlh is closely related to other reported dienelactone hydrolases, and distantly related to other α/β hydrolases. Structural prediction using MODELLER 9.14 showed that GaDlh has the same α/β hydrolase fold as other dienelactone hydrolases and esterase/lipase enzymes, with a catalytic triad consisting of Cys–His–Asp and a G–x–C–x–G–G motif. Based on the predicted structure, GaDlh exhibits several characteristics of cold-adapted proteins such as glycine clustering in the binding pocket, reduced protein core hydrophobicity, and the absence of proline residues in loops. The putative ORF was amplified, cloned, and overexpressed in an Escherichia coli expression system. The recombinant protein was overexpressed as soluble proteins and was purified via Ni–NTA affinity chromatography. Biochemical characterization of GaDlh revealed that it has an optimal temperature at 10 °C and that it retained almost 90% of its residual activity when incubated for 90 min at 10 °C. The optimal pH was at pH 8.0 and it was stable between pH 5–9 when incubated for 60 min (more than 50% residual activity). Its Km value was 256 μM and its catalytic efficiency was 81.7 s−1. To our knowledge, this is the first report describing a novel cold-active dienelactone hydrolase-like protein.

  相似文献   

12.
Medical or surgical castration for the treatment of prostatic cancers prevents androgen production by the testes, but not by the adrenals. Inhibition of the key enzyme for androgen biosynthesis, cytochrome P45017α, could prevent androgen production from both sources. The in vivo effects of 17-(3-pyridyl)androsta-5,16-dien-3β-ol (CB7598) and 17-(3-pyridyl)androsta-5,16-dien-3-one (CB7627), novel potent steroidal inhibitors of this enzyme, on WHT mice were compared with those of castration and two clinically active compounds, ketoconazole and flutamide. Flutamide and surgical castration caused significant reductions in the weights of the ventral prostate and seminal vesicles. CB7598, in its 3β-O-acetate form (CB7630), and CB7627 caused significant reductions in the weights of the ventral prostate, seminal vesicles, kidneys and testes when administered once daily for 2 weeks. Ketoconazole, given on the same schedule, caused no reductions. Plasma testosterone was reduced to 0.1 nM by CB7630, despite a 3- to 4-fold increase in the plasma level of luteinizing hormone. Adrenal weights were unchanged following treatment with CB7630 or CB7627 but were markedly increased following ketoconazole, indicating no inhibition of corticosterone production by these steroidal compounds. These results indicate that CB7598, CB7630 or CB7627 may be useful in the treatment of hormone-dependent prostatic cancers.  相似文献   

13.
14.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

15.
Summary Strains degrading 3-methylbenzoate (3MB) via ortho-cleavage were enriched by preselection with 4-carboxymethyl-2-methylbut-2-en-1,4-olide (2-methyllactone, 2ML) as sole carbon source or by counter selection of meta-cleaving strains using 3-chlorobenzoate (3CB) as suicide substrate. These strains and microorganisms obtained from continuous cultures with 3CB/3MB (Schmidt et al. 1985) or with chlorophenols and cresols (Schmidt 1987) were grouped according to their abilities to grow on 3CB, 3MB or 2ML and their mode of ring-cleavage during growth with aromatic substrates. Each group was tested for its capability to mineralize mixtures of 3CB and 3MB and the extent of DOC-removal was quantified.  相似文献   

16.
The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS–PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.  相似文献   

17.

Background  

The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs).  相似文献   

18.
Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222.  相似文献   

19.
RD3-0028, a compound with a benzodithiin structure, was found to be a potent inhibitor of respiratory syncytial virus (RSV) replication. Its action is specific; no activity is seen against influenza A virus, measles virus, herpes simplex virus type 1 or 2, or human cytomegalovirus. A time-dependent drug addition experiment indicated that the antiviral activity occurs in the late stage of the RSV replication cycle, since this compound completely inhibited syncytium formation even when added up to 16 hr after the infection of cell monolayers at an MOI of 3. RD3-0028 had no direct virucidal effect on RSV. Western blotting analysis showed that RD3-0028 significantly decreased the amount of RSV proteins released into the cell culture medium. Moreover, five independent isolates of the RSV long strain were selected for growth in RD3-0028 (5-20 microg/ml). These resistant viruses were more than 80-fold less sensitive to RD3-0028 than the long strain. The F gene segment of each of these viruses was sequenced and in each case the mutant RNA segment contained at least one sequence alteration, converting asparagine 276 to tyrosine (F1 protein). These results suggest that RD3-0028 inhibits RSV replication by interfering with intracellular processing of the RSV fusion protein, or a step immediately thereafter, leading to loss of infectivity.  相似文献   

20.
The prochiral sila-ketone acetyldimethyl-(phenyl)silane (1) was reduced enantioselectively into (R)-(1-hydroxyethyl)dimethyl(phenyl)silane [(R)-2] using resting cells of the commercially available yeast Saccharomyces cerevisiae (DHW S-3) as the biocatalyst. The bioconversion was performed on a 2.0-g scale in a 5-1 bioreactor. Starting with a substrate (1) concentration of 0.4 g·1–1, the highest production rate measured for this bioconversion was about 45–55 mol (R)-2·1–1·min–1. After an incubation time of 1 h, all substrate in the medium had been converted, either biocatalytically reduced to (R)-2 or (probably chemically) converted into dimethyl(phenyl)silanol (Me2PhSiOH). After extraction of the cell-free medium with ethyl acetate/dichloromethane and subsequent purification of the extract by Kugelrohr distillation and chromatography on silica gel (medium-pressure liquid chromatography), 800 mg (yield 40%) of the bioconversion product (R)-2 was isolated. As shown by HPLC studies (cellulose triacetate as the chiral stationary phase) and 1H-nuclear magnetic resonance experiments (after derivatization of the bioconversion product with a chiral auxiliary agent), compound (R)-2 was almost enantiomerically pure (> 99% enantiomeric excess).This article is dedicated to Prof. Dr. Fritz Wagner on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号