首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2002年   2篇
  1998年   1篇
  1969年   1篇
排序方式: 共有77条查询结果,搜索用时 359 毫秒
1.
A study on butyrophilin (BTN) gene was conducted to detect variability at nucleotide level between cattle and buffalo. Hae III PCR-RFLP was carried out in crossbred cattle and it revealed polymorphism at this locus. Three genotypes namely, AA, BB and AB and two alleles were observed with frequencies 0.78, 0.17, 0.04 and 0.87, 0.13, respectively. The sequences of different cattle, buffalo and sheep breeds have been reported in the EMBL gene bank with accession numbers: AY491468 to AY491475. The nucleotides, which have been substituted from allele A to B, were found to be C to G (71st nucleotide), C to T (86th nucleotide), A to T (217th nucleotide), G to A (258th nucleotide), A to C (371st nucleotide) and C to T (377th nucleotide). The nucleotide substitution at 71st, 86th and 377th position of the fragment were expected to be a silent mutation where as nucleotide changes at 217th, 258th and 371st positions were expected to be substituted by lysine with arginine, valine with isoleucine and leucine with proline in allele B. The differences of nucleotides and amino acids between cattle, buffalo and sheep breeds have been revealed and on the basis of nucleotide as well as protein variability the phylogenetic diagram have been developed indicating closeness between cattle and buffalo.  相似文献   
2.
To achieve the high protein concentrations required for subcutaneous administration of biologic therapeutics, numerous manufacturing process challenges are often encountered. From an operational perspective, high protein concentrations result in highly viscous solutions, which can cause pressure increases during ultrafiltration. This can also lead to low flux during ultrafiltration and sterile filtration, resulting in long processing times. In addition, there is a greater risk of product loss from the hold-up volumes during filtration operations. From a formulation perspective, higher protein concentrations present the risk of higher aggregation rates as the closer proximity of the constituent species results in stronger attractive intermolecular interactions and higher frequency of self-association events. There are also challenges in achieving pH and excipient concentration targets in the ultrafiltration/diafiltration (UF/DF) step due to volume exclusion and Donnan equilibrium effects, which are exacerbated at higher protein concentrations. This paper highlights strategies to address these challenges, including the use of viscosity-lowering excipients, appropriate selection of UF/DF cassettes with modified membranes and/or improved flow channel design, and increased understanding of pH and excipient behavior during UF/DF. Additional considerations for high-concentration drug substance manufacturing, such as appearance attributes, stability, and freezing and handling are also discussed. These strategies can be employed to overcome the manufacturing process challenges and streamline process development efforts for high-concentration drug substance manufacturing.  相似文献   
3.
Lipophilic chalcones and their conformationally restricted analogues were synthesized and evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv strain. Compounds 16, 24, 25a and 25c were found to be active MIC at 60, 30, 3.5 and 7.5 μg-mL?1. In vitro cytotoxicity of compounds 16, 24, 25a, 25c and 26 in non-cancerous human epithelial kidney cell line (HEK-293) showed that most active compound 25a was approximately 2.85 times selective towards tubercular versus healthy cells whereas compound 24 was found to be 16 times selective.  相似文献   
4.
Heat shock protein 90 (Hsp90) is a member of the heat shock family of molecular chaperones that regulate protein conformation and activity. Hsp90 regulates multiple cell signaling pathways by controlling the abundance and activity of several important protein kinases and cell cycle-related proteins. In this report, we show that inhibition of Hsp90 by geldanamycin or its derivative, 17-allylamino-17-desmethoxygeldamycin, leads to activation of the Rho GTPase and a dramatic increase in actin stress fiber formation in human tumor cell lines. Inactivation of Rho prevents geldanamycin-induced actin reorganization. Hsp90 inactivation does not alter the appearance of filopodia or lamellipodia and tubulin architecture is not visibly perturbed. Our observations suggest that Hsp90 has an important and specific role in regulating Rho activity and Rho-dependent actin cytoskeleton remodeling.  相似文献   
5.
6.
The increasing incidence of hospital-acquired infections caused by drug-resistant pathogens, host toxicity, the poor efficacy of drugs and high treatment costs has drawn attention to the potential of natural products as antifungals in mucocutaneous infections and combinational therapies. Moreover, cellular and subcellular targets for these compounds may provide better options for the development of novel antifungal therapies. Eugenol, methyl eugenol and estragole are phenylpropanoids found in essential oil. They are known to possess pharmacological properties including antimicrobial activity. Induction of oxidative stress characterized by elevated levels of free radicals and an impaired antioxidant defence system is implicated as a possible mechanism of cell death. An insight into the mechanism of action was gained by propidium iodide cell sorting and oxidative stress response to test compounds in Candida albicans. The extent of lipid peroxidation (LPO) of cytoplasmic membranes was estimated to confirm a state of oxidative stress. Activity levels of primary defence enzymes and glutathione were thus further determined. Whereas these compounds cause fungal cell death by disrupting membrane integrity at minimum inhibitory concentrations (MIC), sub-MIC doses of these compounds significantly impair the defence system in C. albicans. The study has implications for understanding microbial cell death caused by essential oil components eliciting oxidative stress in Candida. The formation of membrane lesions by these phenylpropanoids thus appears to be the result of free radical cascade-mediated LPO.  相似文献   
7.
Curcumin has been shown to have anti malarial activity, but poor bioavailability and chemical instability has hindered its development as a drug. We have bound curcumin to chitosan nanoparticles to improve its bioavailability and chemical stability. We found that curcumin bound to chitosan nanoparticles did not degrade that rapidly in comparison to free curcumin when such particles were incubated in mouse plasma in vitro at room temperature. The uptake of bound curcumin from chitosan nanoparticles by mouse RBC was much better than from free curcumin. Oral delivery of curcumin bound chitosan nanoparticles to normal mice showed that they can cross the mucosal barrier intact and confocal microscopy detected the nanoparticles in the blood. Curcumin loaded chitosan nanoparticles when delivered orally improved the bioavailability of curcumin in the plasma and RBC. While mice infected with a lethal strain of Plasmodium yoelii (N-67) died between 8 and 9 days post infection, feeding of chitosan nanoparticles alone made them to survive for five more days. Feeding 1mg of native curcumin to infected mice per day for seven days resulted in survival of one third of mice but under the same condition when 1mg of curcumin bound to chitosan nanoparticles was fed all the mice survived. Like chloroquine, curcumin inhibited parasite lysate induced heme polymerization in vitro in a dose dependent manner and curcumin had a lower IC(50) value than chloroquine. We believe that binding of curcumin to chitosan nanoparticles increases its chemical stability and enhances its bioavailability when fed to mice. In vitro data suggest that it can inhibit hemozoin synthesis which is lethal for the parasite.  相似文献   
8.
When unfolded proteins accumulate to irremediably high levels within the endoplasmic reticulum (ER), intracellular signaling pathways called the unfolded protein response (UPR) become hyperactivated to?cause programmed cell death. We discovered that?thioredoxin-interacting protein (TXNIP) is?a critical node in this "terminal UPR." TXNIP becomes rapidly induced by IRE1α, an ER bifunctional kinase/endoribonuclease (RNase). Hyperactivated IRE1α increases TXNIP mRNA stability by reducing levels of a TXNIP destabilizing microRNA, miR-17. In turn, elevated TXNIP protein activates the NLRP3 inflammasome, causing procaspase-1 cleavage and interleukin 1β (IL-1β) secretion. Txnip gene deletion reduces pancreatic β cell death during ER stress and suppresses diabetes caused by proinsulin misfolding in the Akita mouse. Finally, small molecule?IRE1α RNase inhibitors suppress TXNIP production to block IL-1β secretion. In summary, the IRE1α-TXNIP pathway is used in the terminal UPR to promote sterile inflammation and programmed cell death and may be targeted to develop effective treatments for cell degenerative diseases.  相似文献   
9.
Artemisia annua is well-known for producing the antimalarial phytomolecule, artemisinin. The role of peroxidases has been hypothesized in artemisinin metabolism owing to the presence of an –O–O– linkage in this sesquiterpene lactone. Earlier, using a microarray, we identified differentially expressed genes, including peroxidases, in plant growth stages having contrasting artemisinin content. Here, three peroxidases—Aa547, having higher expression in low-artemisinin stage, and Aa540 and Aa528, having higher expression in high artemisinin stage, which could be associated with trichomes on the basis of their approximate gene expression pattern inferred from EST counts in UniGene—were selected for full-length cloning, tissue-specific expression profiling, and in silico analyses. The upstream genomic region of Aa547 was cloned and various cis-regulatory elements were identified. All the three candidates were predicted to be class III plant peroxidases. Further, this study aimed to check the responsiveness of the logically selected peroxidase genes to various abiotic stress factors. Taking cues from previous reports and the regulatory elements observed in the Aa547 promoter, hydration, salinity, temperature, salicylic acid, hydrogen peroxide, and methyl jasmonate, were selected to study their effect on the expression of the peroxidase genes through qRT-PCR. The peroxidases were found to be highly sensitive to the various factors but differed in their responses. Broadly, except for responses to high temperature and salicylic acid, the response of Aa547 to various factors was distinct from that of Aa540 and Aa528, which was in line with its distinctness from the other two peroxidases, considering the in planta artemisinin content and predicted structural features.  相似文献   
10.
Latent Epstein-Barr virus (EBV) infection is strongly associated with several cancers, including nasopharyngeal carcinoma (NPC), a tumor that is endemic in several parts of the world. We have investigated the molecular basis for how EBV latent infection promotes the development of NPC. We show that the viral EBNA1 protein, previously known to be required to maintain the EBV episomes, also causes the disruption of the cellular PML (promyelocytic leukemia) nuclear bodies (or ND10s). This disruption occurs both in the context of a native latent infection and when exogenously expressed in EBV-negative NPC cells and involves loss of the PML proteins. We also show that EBNA1 is partially localized to PML nuclear bodies in NPC cells and interacts with a specific PML isoform. PML disruption by EBNA1 requires binding to the cellular ubiquitin specific protease, USP7 or HAUSP, but is independent of p53. We further observed that p53 activation, DNA repair and apoptosis, all of which depend on PML nuclear bodies, were impaired by EBNA1 expression and that cells expressing EBNA1 were more likely to survive after induction of DNA damage. The results point to an important role for EBNA1 in the development of NPC, in which EBNA1-mediated disruption of PML nuclear bodies promotes the survival of cells with DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号