首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
本文旨在探讨第四脑室注射orexin-A及orexin 1型受体(orexin-1 receptor,OX1R)拮抗剂SB334867对肥胖和正常大鼠摄食和自由活动的影响。采用高脂饲料诱导建立肥胖大鼠模型,分别在肥胖和正常大鼠第四脑室注射不同剂量orexin-A或SB334867,观察光照和黑暗环境下两种大鼠0~4 h摄食量及活动量的变化。结果显示,第四脑室注射不同剂量orexin-A,光照条件下,正常和肥胖大鼠0~4 h摄食量和活动量均较生理盐水对照组明显增加,呈剂量依赖关系(P0.05~0.01);且肥胖大鼠摄食量和活动量显著高于正常大鼠;黑暗条件下,不同剂量的orexin-A对正常和肥胖大鼠摄食量和活动量均没有明显改变(P0.05)。第四脑室注射不同剂量SB334867,光照条件下,正常和肥胖大鼠0~2 h,2~4 h摄食量和活动量均较生理盐水对照组明显减少(P0.05);且肥胖大鼠摄食量和活动量均显著高于正常大鼠;黑暗条件下,正常和肥胖大鼠摄食量和活动量均没有明显改变(P0.05)。以上结果提示,第四脑室周核团可能是orexin-A及OX1R作用靶点之一;光照条件对orexin-A和OX1R生理功能的发挥可能具有重要影响。  相似文献   

2.
目的:探讨下丘脑腹内侧核Orexin-1及其受体对大鼠胃酸分泌的影响及其机制。方法:大鼠麻醉后侧脑室及VMH置管,大鼠分组后分别VMH注射orexin-A、[Pro~(34)]-酪酪肽、[c PP1-7、NPY~(19-23)、Ala~(31)、Aib~(32)、Gln~(34)]胰多肽;腹腔注射SB-334867;皮下注射阿托品;侧脑室微量注射GR-231118、CGP-71683。给药结束后使用幽门结扎模型检测大鼠的胃酸分泌。结果:OXA能够促进胃酸分泌,且呈量效依赖关系。腹腔注射SB-334867能够抑制胃酸分泌,且呈量效依赖关系;SB-334867能够抑制orexin-A对胃酸分泌的促进作用;阿托品不但能够抑制胃酸分泌并且还能够完全阻断OXA的促胃酸分泌作用。侧脑室微量注射GR-231118或CGP-71683胃酸及胃液量减少,呈量效依赖关系,并且能够完全阻断OXA的促胃酸分泌作用。VMH内微量注射[cPP~(1-7),NPY~(19-23),Ala~(31),Aib~(32),Gln~(34)]胰多肽胃酸分泌增多,且呈量效依赖关系。结论:Orexin-A能够作用于下丘脑VMH促进胃酸分泌,orexin受体、Y1和Y5受体以及迷走神经系统均参与该过程。  相似文献   

3.
目的:观察侧脑室注射食欲素A(OXA)对大鼠胃运动的作用及作用途径。方法:选取成年雄性大鼠50只,随机分为5组,即生理盐水(NS)组、1μg组、5μg组、10μg组和20μg组。在胃窦和十二指肠植入应力传感器,记录大鼠胃肠自发性运动。通过侧脑室注射OXA,观察胃肠环形肌运动波形的变化和持续时间。选取10只大鼠随机分为2组,一组皮下注射NS+10μg OXA,另一组皮下注射阿托品+10μg OXA,观察OXA对胃肠运动的影响。同理选取10只大鼠分为假手术组+10μg OXA组,迷走神经切断组+10μg OXA组,观察OXA调控大鼠胃肠运动的作用途径。再选取10只大鼠,先注射NS再注射OXA拮抗剂SB334867,观察内源性OXA对胃肠运动的影响。结果:侧脑室注射OXA(1-20μg),大鼠消化间期胃和十二指肠III期收缩波消失,继而出现胃和十二指肠餐后不规则的收缩波。OXA对餐后胃肠运动的影响可被阿托品或切断迷走神经干所阻断(P0.05)。中枢注射选择性OXA受体拮抗剂SB-334867(16μg),可增强胃消化间期III相收缩(P0.05)。结论:中枢注射OXA可能经迷走神经胆碱能通路调控大鼠消化间期的胃肠运动,内源性OXA可能对大鼠消化间期胃肠运动具有抑制作用。  相似文献   

4.
目的:探讨侧脑室注射orexin-A对大鼠昼夜摄食的影响。方法:将Wistar大鼠随机分组,采用单剂量侧脑室注射和连续侧脑室注射以及外周注射法,分别于日间和夜间给药,测量大鼠24小时内各阶段的摄食量以及相应生化指标。结果:在光照期间,侧脑室微量注射orexin-A,大鼠4小时内摄食量显著增加(P0.05),且呈剂量依赖关系(P0.05)。在夜间初期(18:00)侧脑室注射orexin-A,大鼠食物摄入量无显著差异(P0.05)。但在中午12:00给予侧脑室注射orexin-A,注射后4小时内大鼠摄食量显著高于NS对照组(P0.05)。连续8日给予orexin-A侧脑室注射,可使注射后日间摄食量显著增加(P0.05),而夜间摄食量显著减少(P0.05),但24小时内总的摄食量不变(P0.05)。orexin-A并未改变棕色脂肪组织温度、末梢血糖、血浆瘦素等指标的水平。结论:orexin-A对大鼠摄食的调节具有昼夜节律性。  相似文献   

5.
目的:探讨第四脑室注射orexin-A(OXA)对大鼠饮食摄取条件性位置偏爱的影响。方法:将30只大鼠随机分成3组,即对照组,低剂量组和高剂量组,第四脑室分别注射生理盐水(NS)、orexin-A或orexin-A受体拮抗剂SB334867,观察大鼠按压杠杆获取蔗糖的次数和最高频率的变化。再选择30只大鼠,第四脑室注射orexin-A和SB334867,观察大鼠对高脂饮食(HF)食物的摄入量。另选取30只大鼠第四脑室注射orexin-A或SB334867,将大鼠置于条件位置偏爱箱来检测大鼠对HF条件性位置偏爱的变化。结果:与对照组相比,24小时禁食大鼠,第四脑室注射orexin-A,可显著增加大鼠按压杠杆获取蔗糖的次数和最高频率(P0.05)。而SB334867可显著降低大鼠按压杠杆获取蔗糖次数以及最大频率(P0.05)。第四脑室注射orexin-A,可使大鼠HF摄入量显著增加(P0.05),第四脑室注射SB334867,不影响大鼠HF摄入量,但会抑制普通饮食的摄入(P0.05)。第四脑室注射orexin-A能增强对HF饮食位置偏爱性的表达,注射SB334867后会显著抑制大鼠对HF饮食位置偏爱性的表达(P0.05)。结论:第四脑室注射Orexin-A可影响大鼠摄食行为,增加高脂饮食的摄入量,增强对HF饮食位置偏爱性的表达。  相似文献   

6.
目的:研究orexin在隔核对大鼠胃传入信息的调控作用。方法:选取健康成年雄性Wistar大鼠138只(体质量250-300 g),记录神经元放电活动,鉴定隔核胃牵张(GD)敏感性神经元;隔核微量注射orexin-A或orexin-A受体拮抗剂SB334867,观察隔核GD敏感性神经元放电活动变化;隔核微量注射不同浓度的orexin-A,观察大鼠胃运动的变化。结果:隔核微量注射orexin-A的大鼠胃运动幅度和频率显著增加,并呈剂量依赖关系(P0.05-0.01),微量注射SB-334867可完全阻断orexin-A对胃运动的影响。隔核微量注射orexin-A后,有36个GD-E神经元兴奋(P0.01),16个GD-I神经元抑制。Orexin-A受体拮抗剂SB334867可完全阻断orexin-A对GD敏感神经元的作用。结论:隔核注射orexin能促进大鼠胃运动,并影响胃牵张敏感神经元的放电活动。  相似文献   

7.
目的:探讨蓝斑区(LC)去甲肾上腺素能神经元在orexin促麻醉觉醒中作用。方法:应用异氟烷对成年SD大鼠进行麻醉,15分钟后,将SD大鼠随机分为6组,分别注射orexin-A/B(100pmol/0.3μL)及其溶剂saline(0.3μL);orexin I型受体拮抗剂SB334867/II型受体拮抗剂TCS-OX2-29(20μg/0.3μL及其溶剂DMSO(0.3μL),通过观察大鼠翻正反射的消失和恢复时间,研究蓝斑区微注射orexin及其拮抗剂对异氟烷麻醉的诱导和觉醒的影响。结果:蓝斑区(LC)微注射四种试剂或其溶剂均对SD大鼠异氟烷麻醉的诱导时间无明显影响;蓝斑区(LC)微注射orexin-A能缩短SD大鼠异氟烷麻醉觉醒时间(P〈0.001),而微注射orexinI型拮抗剂SB334867能延长觉醒时间(P〈0.001);orexin-B、orexin II型受体拮抗剂TCS-OX2-29对大鼠异氟烷麻醉的觉醒无明显影响。结论:蓝斑区(LC)的去甲肾上腺素能神经元介导了orexin的促麻醉觉醒作用。  相似文献   

8.
目的:探讨侧脑室注射orexins(食欲素)、NPY(神经肽Y)、MCH(黑色素聚集激素)和甘丙肽对大鼠摄食的影响及其机制。方法:将成年雄性Wistar大鼠随机分为对照组、侧脑室注射组和室旁核(PVN)注射组。通过套管将orexin-A、orexin-B、NPY、MCH和甘丙肽分别注射至侧脑室和PVN内,随后测量大鼠食物摄入量,并检测PVN、弓状核(ARC)和VMH内c-fos的表达。结果:与对照组比较,侧脑室注射NPY、MCH和orexin-B 2 h后,大鼠摄食量显著增多(P0.05)。相较于orexin-B和MCH,NPY对摄食的影响更显著(P0.05)。与NS对照组比较,侧脑室注射甘丙肽和orexin-A 1 h后,大鼠摄食量显著增多(P0.05)。与NS对照组比较,侧脑室注射orexin-A可显著增加c-fos在PVN和ARC中的表达,在VMH中效应较弱(P0.05)。与NS对照组比较,PVN注射NPY能显著增加大鼠2 h摄食量(P0.05),PVN注射orexin-A能显著增加大鼠2 h和4 h摄食量(P0.05)。结论:orexins与可促进大鼠摄食,此效应可能通过下丘脑参与摄食调控中枢PVN和ARC而实现的。  相似文献   

9.
目的:探索氯胺酮麻醉下,Orexin神经信号是否激活结节乳头体核(Tuberomammillary Nucleus,TMN)促进大鼠氯胺酮麻醉觉醒。方法:成年雄性SD大鼠(体重230-280 g),在10%水合氯醛麻醉下(1 ml/kg,i.p.)进行以下实验:1TMN核团埋置微注射外套管,回笼单独饲养7天后,大鼠随机分为三组,分别为对照组(NS)、orexin-A组与orexin-B组。TMN核团分别双侧微注射NS(0.3μL)、orexin-A(100 pmol/0.3μL)及orexin-B(100 pmol/0.3μL)观察氯胺酮麻醉下(100 mg/kg,腹腔注射)大鼠诱导时间与觉醒时间;2上述实验7天后,大鼠随机分为三组,分别为溶剂DMSO组、SB334867组与TCS-OX2-29组,TMN核团分别双侧微注射DMSO(0.3μL)、orexin 1型受体(the orexin type 1 receptor,OX1R)的拮抗剂SB334867(20μg/0.3μL)和orexin 2型受体(the orexin type 2 receptor,OX2R)的拮抗剂TCS-OX2-29(20μg/0.3μL)观察氯胺酮麻醉下大鼠诱导时间与觉醒时间。结果:1各组大鼠的诱导时间无统计学差异。2在TMN核团微注射orexin-A与对照组相比明显缩短了大鼠的觉醒时间(43.17±6.31 min vs51.17±4.45 min,P0.05),而微注射orexin-B与对照组相比并没有明显影响大鼠的觉醒时间(50.33±3.50 min vs 51.17±4.45min,P0.05)。3TMN核团微注射OX1R拮抗剂SB334867较溶剂DMSO组延长了麻醉觉醒时间(60.83±8.84 min vs 49.00±5.73 min,P0.05),OX2R拮抗剂TCS-OX2-29与溶剂DMSO组相比并没有明显影响大鼠的觉醒时间(50.83±4.79 min vs 49.00±5.73 min,P0.05)。结论:本研究实验证据证实在氯胺酮麻醉下,orexin神经信号可能通过激活TMN区组胺能神经系统促进麻醉向觉醒的转换。  相似文献   

10.
目的:探讨下丘脑外侧核(LHA)-伏隔核(NAcc)orexin-A神经和功能通路构成及该通路对胃运动的影响及潜在机制。方法:将健康成年雄性Wistar大鼠随机分为逆行追踪组和胃运动组:逆行追踪组大鼠采用逆行追踪技术结合免疫荧光组织化学染色法,观察下丘脑外侧核-伏隔核间是否存在orexin-A神经通路;胃运动组大鼠通过在体胃运动研究,观察伏隔核内微量注射不同浓度orexin-A对大鼠胃运动幅度和频率的影响,以及电刺激下丘脑外侧核后,大鼠胃运动的变化及机制。结果:荧光逆行追踪结合荧光免疫组织化学染色结果显示:下丘脑外侧核内有荧光金和orexin-A双重标记的神经元。胃运动研究结果显示:伏隔核内微量注射orexin-A,大鼠胃运动幅度和频率显著增加,并呈现显著剂量依赖关系(P0.05),伏隔核预先微量注射SB-334867,可反转该效应(P0.05)。电刺激下丘脑外侧核,大鼠胃运动幅度和频率显著增强(P0.05)。同样,伏隔核内微量注射SB-334867,再电刺激下丘脑外侧核,电刺激导致的胃运动增强效应显著减弱(P0.05)。结论:下丘脑外侧核-伏隔核存在orexin-A神经和功能通路,该通路可能通过orexin-A受体介导参与胃动力和能量代谢调控。  相似文献   

11.
Orexin A (OXA) increases food intake and inhibits fasting small bowel motility in rats. The aim of this study was to examine the effect of exogenous OXA and endogenous OXA on gastric emptying, acid secretion, glucose metabolism and distribution of orexin immunoreactivity in the stomach. Rats equipped with a gastric fistula were subjected to intravenous (IV) infusion of OXA or the selective orexin-1 receptor (OX1R) antagonist SB-334867-A during saline or pentagastrin infusion. Gastric emptying was studied with a liquid non-nutrient or nutrient, using 51Cr as radioactive marker. Gastric retention was measured after a 20-min infusion of OXA or SB-334867-A. Plasma concentrations of OXA, insulin, glucagon, glucose and gastrin were studied. Immunohistochemistry against OXA, OX1R and gastrin in gastric tissue was performed. OXA alone had no effect on either acid secretion or gastric emptying. SB-334867-A inhibited both basal and pentagastrin-induced gastric acid secretion and increased gastric retention of the liquid nutrient, but not PEG 4000. Plasma gastrin levels were unchanged by IV OXA or SB-334867-A. Plasma OXA levels decreased after intake of the nutrient meal and infusion of the OX1R antagonist. Only weak effects were seen on plasma glucose and insulin by OXA. Immunoreactivity to OXA and OX1R were found in the mucosa, myenteric cells bodies and varicose nerve fibers in ganglia and circular muscle of the stomach. In conclusion, endogenous OXA influences gastric emptying of a nutrient liquid and gastric acid secretion independent of gastrin. This indicates a role for endogenous OXA, not only in metabolic homeostasis, but also in the pre-absorptive processing of nutrients in the gut.  相似文献   

12.
Akbari E  Naghdi N  Motamedi F 《Peptides》2007,28(3):650-656
The novel neuropeptides orexin-A and orexin-B derive from a common 130-amino acid precursor molecule (prepro-orexin), are mainly localized to neurons within and around the lateral hypothalamus, and exhibit high affinity to the closely related G-Protein-coupled receptors orexin 1 and 2 receptor (OX1R, OX2R). Orexinergic neurons send their axons to the hippocampal formation (CA1, CA2 and dentate gyrus), which expresses OX1Rs. Recent studies have shown that central administration of orexin-A and orexin-B have effects on learning and memory but literature concerning the role of orexinergic system in cognition remains controversial. More recently, antagonists have been described. The most potent and selective is SB-334867-A, which has an affinity of 40 nM at OX1R which is at least 50-fold selective over OX2R. It is likely that the intracerebroventricular (i.c.v.) administration may block OX1Rs in many brain regions. Previously we have shown that intra-CA1 injection of SB-334867-A impairs acquisition, consolidation and retrieval of spatial memory in MWM task. In the present study, the effect of pre-training, post-training and pre-probe of trial intra-DG (dentate gyrus) administration of SB-334867-A (1.5, 3, 6 microg/0.5 microl) on acquisition, consolidation and retrieval in a single-day testing version of MWM (Morris water maze) task was examined. Our results show impaired acquisition and consolidation of MWM task for SB-334867-A as compared with the control group. However, SB-334867-A had no effect on retrieval in spatial memory. Also, this antagonist had no effect on escape latency of a non-spatial visual discrimination task. Therefore, it seems that endogenous orexin-A and orexin-B, through DG OX1Rs, play an important role in spatial learning and memory in the rat.  相似文献   

13.
White CL  Ishii Y  Mendoza T  Upton N  Stasi LP  Bray GA  York DA 《Peptides》2005,26(11):2331-2338
An orexin-1 receptor antagonist decreases food intake whereas orexin-A selectively induces hyperphagia to a high-fat diet. In the present study, we evaluated the effect of an orexin antagonist in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat diet. Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were treated acutely with an orexin-1 receptor antagonist (SB-334867), after adaptation to either a high-fat (56% fat energy) diet or a low-fat (10% fat energy) diet that were equicaloric for protein (24% energy). Ad libitum fed rats were injected intraperitoneally with SB-334867 at doses of 3, 10 or 30 mg/kg, or vehicle at the beginning of the dark cycle, and food intake and body weight were measured. Hypothalamic prepro-orexin and orexin-1 receptor mRNA expression were analyzed in OM and S5B rats fed at a high-fat or low-fat diet for two weeks. SB-334867 significantly decreased food intake in both strains of rats eating the high-fat diet but only in the OM rats eating the low fat diet. The effect was greatest at 12 and 24 h. Body weight was also reduced in OM rats 1d after injection of SB-334867 but not in the S5B rats. Prepro-orexin and orexin-1 receptor expression levels did not differ between strains or diets. These experiments demonstrate that an orexin antagonist (SB-334867) reduces food intake and has a greater effect in a rat strain that is susceptible to dietary-induced obesity, than in a resistant strain.  相似文献   

14.
Orexin A (OXA)-positive neurons are found in the lateral hypothalamic area and the enteric nervous system. The aim of this study was to investigate the mechanism of OXA action on small bowel motility. Electrodes were implanted in the serosa of the rat small intestine for recordings of myoelectric activity during infusion of saline or OXA in naive rats, vagotomized rats, rats pretreated with guanethidine (3 mg/kg) or N(omega)-nitro-L-arginine (L-NNA; 1 mg/kg). Naive rats were given a bolus of the orexin receptor-1 (OX1R) antagonist (SB-334867-A; 10 mg/kg), and the effect of both OXA and SB-334867-A on fasting motility was studied. Double-label immunocytochemistry with primary antibodies against OXA, neuronal nitric oxide synthase (nNOS), and OX1R was performed. OXA induced a dose-dependent prolongation of the cycle length of the migrating myoelectric complex (MMC) and, in the higher doses, replaced the activity fronts with an irregular spiking pattern. Vagotomy or pretreatment with guanethidine failed to prevent the response to OXA. The OXA-induced effect on the MMC cycle length was completely inhibited by pretreatment with L-NNA (P < 0.05), as did SB-334867-A. The OX1R antagonist shortened the MMC cycle length from 14.1 (12.0-23.5) to 11.0 (9.5-14.7) min (P < 0.05) during control and treatment periods, respectively. Colocalization of OXA and nNOS was observed in myenteric neurons of the duodenum and nerve fibers in the circular muscle. Our results indicate that OXA inhibition of the MMC involves the OX1R and that activation of a L-arginine/NO pathway possibly originating from OX1R/nNOS-containing neurons in the myenteric plexus may mediate this effect. Endogenous OXA may have a physiological role in regulating the MMC.  相似文献   

15.
The aim of this study was to investigate the central actions of the stable pansomatostatin peptide agonist, ODT8-SST on body weight. ODT8-SST or vehicle was acutely (1μg/rat) injected or chronically infused (5μg/rat/d, 14d) intracerebroventricularly and daily food intake, body weight and composition were monitored. In lean rats, neither acute nor chronic ODT8-SST influenced daily food intake while body weight was reduced by 2.2% after acute injection and there was a 14g reduction of body weight gain after 14d compared to vehicle (p<0.01). In diet-induced obese (DIO) rats, chronic ODT8-SST increased cumulative 2-week food intake compared to vehicle (+14%, p<0.05) and also blunted body weight change (-11g, p<0.05). ODT8-SST for 14d reduced lean mass (-22g and -25g respectively, p<0.001) and total water (-19g and -22g respectively, p<0.001) in lean and DIO rats and increased fat mass in DIO (+16g, p<0.001) but not lean rats (+1g, p>0.05) compared to vehicle. In DIO rats, ODT8-SST reduced ambulatory (-27%/24h, p<0.05) and fine movements (-38%, p<0.01) which was associated with an increased positive energy balance compared to vehicle (+50g, p<0.01). Chronic central somatostatin receptor activation in lean rats reduces body weight gain and lean mass independently of food intake which is likely related to growth hormone inhibition. In DIO rats, ODT8-SST reduces lean mass but promotes food intake and fat mass, indicating differential responsiveness to somatostatin under obese conditions.  相似文献   

16.
Aging is associated with a progressive decrease in appetite and food intake. Both A and B orexins, expressed in specific neurons of the lateral hypothalamic area, have been implicated in the regulation of sleep and feeding. In this study, the stimulatory effect of intracerebroventricular administration of the orexins on food intake was compared between young (4-mo-old) and old (25- to 27-mo-old) male Wistar rats. A stainless steel cannula was implanted stereotactically into the left lateral ventricle. After a 7-day recovery period, different doses (0-30 nmol) of orexins were injected into the left lateral ventricle without anesthesia. Food and water consumptions were measured at 1, 2, and 4 h after injection. The protein levels of orexin receptors, a specific receptor for orexin-A (OX1R) and a receptor for both orexin-A and -B (OX2R), in the hypothalamus were determined by Western blot analysis and compared between young and old rats. Intracerebroventricular administration of orexin-A stimulated food intake in a dose-dependent manner in young rats. However, no effects were observed at any dose in old rats. The protein level of OX1R in the hypothalamus was significantly lower in old rats than in young rats, although the protein level of OX2R was comparable between groups. Results of the present study indicate that the function of the orexin system is diminished in old rats. The decrease in the OX1R protein level in the hypothalamus could be responsible for orexin-A's lack of stimulation of food intake in old rats.  相似文献   

17.
A variety of evidence implicates the orexins, especially orexin-A, in the regulation of food intake, but it has not been established whether this effect is mediated by the orexin-1 or orexin-2 receptor. In the present study, a selective orexin-1 receptor antagonist, 1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea hydrochloride (SB-334867-A), was administered intraperitoneally to rats under various conditions, and food consumption was subsequently measured over 24 h. In male rats, a single dose of SB-334867-A (30 mg/kg, i.p.) given during the light phase reduced both orexin-A-induced food intake (7 nmol, i.c.v.) and feeding stimulated by an overnight fast for 4 h. When given at the start of the dark phase, food consumption was reduced in both male and female rats over 24 h. Daily injections at the start of the dark phase for 3 days reduced natural feeding in male rats over 24 h on days one and three. These findings demonstrate direct inhibition of orexin-A induced food intake with a selective orexin-1 receptor antagonist. Furthermore, the suppression of nocturnal feeding and food intake stimulated by an overnight fast supports other evidence that orexin-A is involved in the regulation of natural feeding and suggests that orexin-1 receptor antagonists could be useful in the treatment of obesity.  相似文献   

18.
Hypothalamic orexin neurons project to the hindbrain, and 4th-ventricle intracerebroventricular (4th-icv) injection of orexin-A treatment increases food intake. We assessed the effects of hindbrain orexin-A and the orexin-1-receptor antagonist SB334867 on meal pattern in rats consuming standard chow. When injected 4th-icv shortly before dark onset, lower doses of orexin-A increased food intake over a 2-h period by increasing the size of the first meal relative to vehicle, whereas the highest dose increased food intake by causing the second meal to be taken sooner. Conversely, hindbrain SB334867 reduced food intake by decreasing the size of the first meal of the dark phase. We also examined the effects of 4th-icv orexin-A and SB334867 on locomotor activity. Only the highest dose of orexin-A increased activity, and SB334867 had no effect. In addition, hindbrain SB334867 induced c-Fos in the nucleus of the solitary tract. These data support the suggestion that endogenous hindbrain orexin-A acts to limit satiation. Both orexin-A and the pancreatic satiation hormone amylin require an intact area postrema to affect food intake, so we asked whether 4th-icv orexin-A impairs the satiating effect of peripheral amylin treatment. Amylin reduced the size of the first meal of the dark cycle when rats were pretreated with 4th-icv saline, yet amylin was ineffective after 4th-icv orexin-A pretreatment. Using double-label immunohistochemistry, we determined that some orexin-A fibers in the area postrema are located in proximity to amylin-responsive neurons. Therefore, hindbrain orexin-A may increase food intake, in part, by reducing the ability of rats to respond to amylin during a meal.  相似文献   

19.
The aim of this study was to investigate the effect of fasting-induced orexin-A (OXA) on inflammation and macrophage phagocytic activity. Fifty six male wistar rats were fasted for 36 h to stimulate OXA synthesis. In 24 rats, air pouches were induced subcutaneously in the intrascapular area. After (6 h) carrageenan injection into the pouches, the contents of the air pouches were removed. The exudate volume, protein content and cell count were measured. After the determination of fasting on inflammation, the peritoneal macrophages were collected from 32 rats to investigate the effect of fasting-induced OXA on macrophage phagocytic activity. Plasma OXA levels were markedly higher in fasted rats compared with control rats. The phagocytic capability of peritoneal macrophages was obtained as a percentage of phagocytosing macrophages and number of phagocytosed particles per cell. In spite of increased blood OXA level SB-334867, selective orexin type 1 receptor antagonist (10 mg/kg) did not change phagocytic activity of peritoneal macrophages. These findings indicate that 36 h fasting-induced OXA has no significant effect to phagocytosis of peritoneal macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号