首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
c-myc can induce expression of G0/G1 transition genes.   总被引:5,自引:3,他引:2       下载免费PDF全文
The human c-myc oncogene was linked to the heat shock-inducible Drosophila hsp70 promoter and used to stably transfect mouse BALB/c 3T3 cells. Heat shock of the transfectants at 42 degrees C followed by recovery at 37 degrees C resulted in the appearance of the human c-myc protein which was appropriately localized to the nuclear fraction. Two-dimensional analysis of the proteins of density-arrested cells which had been heat shock treated revealed the induction of eight protein species and the repression of five protein species. All of the induced and repressed proteins were nonabundant. cDNA clones corresponding to genes induced during the G0/G1 transition were used as probes to assay for c-myc inducibility of these genes. Two anonymous sequences previously identified as serum inducible (3CH77 and 3CH92) were induced when c-myc was expressed. In response to serum stimulation, 3CH77 and 3CH92 were expressed before c-myc mRNA levels increased. However, in response to specific induction of c-myc by heat shock of serum arrested cells, 3CH77 and 3CH92 mRNA levels increased after the rise in c-myc mRNA. Therefore, we hypothesize that abnormal expression of c-myc can induce genes involved in the proliferative response.  相似文献   

4.
P transposons controlled by the heat shock promoter.   总被引:20,自引:2,他引:18       下载免费PDF全文
  相似文献   

5.
This study investigated the resistance to stress as a function of age in Drosophila melanogaster overexpressing Hsp70. The resistances to starvation, paraquat, and cold in flies from 1 to 7 week-old have been measured. The line carrying the insertion vector without the transgenes is more resistant to starvation and cold than the parental and transgenic lines. In contrast, transgenic flies carrying extra-copies of hsp70 are more resistant to paraquat, however this is due to an especially high resistance in two age groups compared to all the other groups. I showed that exposure to a mild heat shock does not increase starvation resistance, slightly increases paraquat resistance, and strongly increases cold resistance. The transgenic flies expressing Hsp70 at higher levels after the heat shock do not exhibit enhanced stress resistance compared to control lines expressing less Hsp70 after the heat shock. The lack of effect of a mild heat shock on starvation and paraquat resistance is not due to a disappearance of the effect with age, since no effect is observed at any age. In contrast, when an effect of Hsp70 induction is observed as on cold resistance, this effect is still observed in old flies.  相似文献   

6.
7.
8.
9.
Elevation of the incubation temperature of Xenopus laevis neurulae from 22 to 33-35 degrees C induced the accumulation of heat shock protein (hsp) 70 mRNA (2.7 kilobases (kb)) and a putative hsp 87 mRNA (3.2 kb). While constitutive levels of both hsp mRNAs were detectable in unfertilized eggs and cleavage-stage embryos, heat-induced accumulation was not observed until after the mid-blastula stage. Exposure of Xenopus laevis embryos to other stressors, such as sodium arsenite or ethanol, also induced a developmental stage-dependent accumulation of hsp 70 mRNA. To characterize the effect of temperature on hsp 70 mRNA induction, neurulae were exposed to a range of temperatures (27-37 degrees C) for 1 h. Heat-induced hsp 70 mRNA accumulation was first detectable at 27 degrees C, with relatively greater levels at 30-35 degrees C and lower levels at 37 degrees C. A more complex effect of temperature on hsp 70 mRNA accumulation was observed in a series of time course experiments. While continuous exposure of neurulae to heat shock (27-35 degrees C) induced a transient accumulation of hsp 70 mRNA, the temporal pattern of hsp 70 mRNA accumulation was temperature dependent. Exposure of embryos to 33-35 degrees C induced maximum relative levels of hsp 70 mRNA within 1-1.5 h, while at 30 and 27 degrees C peak hsp 70 mRNA accumulation occurred at 3 and 12 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.  相似文献   

13.
Aging-specific expression of Drosophila hsp22   总被引:5,自引:0,他引:5  
  相似文献   

14.
We have shown that heat shock does not induce the synthesis of hsp70 in FM3A cells maintained at a low culture temperature of 33 degrees C although it does so in cells maintained at 37 degrees C [T. Hatayama et al. (1991) Biochem. Int. 24, 467-474]. In this paper, we show that FM3A cells maintained at 37 degrees C produced hsp70 mRNA during continuous heating at 42 degrees C or during postincubation at either 37 or 33 degrees C after being heated at 45 degrees C for 15 min, whereas cells maintained at 33 degrees C did not produce hsp70 mRNA during continuous heating at 37, 39, 42, or 45 degrees C, or during postincubation after being heated at any temperature. Thus the lack of hsp70 synthesis in cells maintained at 33 degrees C seemed to be due to the absence of hsp70 mRNA induction. Also, hsp70 was accumulated in cells maintained at 37 degrees C during continuous heating at 42 degrees C and during postincubation at 37 degrees C after heat shock at 45 degrees C, but not during postincubation at 33 degrees C. The cellular level of the constitutive hsp73 as well as the mRNA level were both similar in cells maintained at 33 and 37 degrees C. On the other hand, the cellular level of the constitutive hsp105 in cells maintained at 33 degrees C was only half of that in cells maintained at 37 degrees C. These hsp105 levels increased significantly in both types of cells after continuous heating at 39 degrees C. These findings indicate that the culture temperature affects not only the induction of hsp70 mRNA but also the accumulation of hsp70 and hsp105 in the cells.  相似文献   

15.
16.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

17.
18.
19.
20.
In this study, we have employed whole-mount, in situ hybridization to study the spatial pattern of hsc70 and hsp70 mRNA accumulation in normal and heat shocked embryos during Xenopus laevis development. Our findings revealed that hsc70 mRNA was constitutively present in a global fashion throughout the embryo and was not heat inducible. Accumulation of hsp70 mRNA, however, was detected only in heat shocked embryos. Furthermore, hsp70 mRNA accumulation was enriched in a tissue-specific manner in X. laevis tailbud embryos within 15 minutes of a 33 degrees C heat shock. Abundant levels of heat shock-induced hsp70 mRNA were detected in the head region, including the lens placode, the cement gland, and in the somitic region and proctodeum. Preferential heat-induced accumulation of hsp70 mRNA was first detected at a heat shock temperature of 30 degrees C. Placement of embryos at 22 degrees C after a 1-hour, 33 degrees C heat shock resulted in decreased hsp70 mRNA with time, but the message persisted in selected tissues, including the lens placode and somites. Treatment of tailbud embryos with either sodium arsenite or zinc chloride induced a tissue-specific enrichment of hsp70 mRNA in the lens placode and somitic region. These studies reveal the complex nature of the heat shock response in different embryonic tissues and suggest the presence of regulatory mechanisms that lead to a stressor-induced, tissue-specific enrichment of hsp70 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号