首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Methods have been developed for isolating and maintaining differentiated rat exorbital lacrimal, parotid, and pancreatic acinar cells for up to 1 month in culture. The dissociated cells retained their differentiated morphology when cultured as suspension cultures at 35°C with the appropriate secretagogue (exorbital lacrimal, 10−6 M carbamyl choline; pancreas 10−5 M carbamyl choline; parotid, 10−6 M isoproterenol). Under these conditions the cells remained viable and differentiated for up to 4 weeks in culture and continued to incorporate3H-leucine at rates similar to those of freshly isolated cells. If secretagogue was omitted from the medium, the cells rapidly degenerated. These results indicate that differentiated from the medium, the cells rapidly degenerated. These results indicate that differentiated exocrine gland acinar cells may be maintained in vitro and utilized as a model system for the study of secretory processes.  相似文献   

2.
Summary Creeping bluestem (Schizachyrium scoparium (Michx.) Nash var. stoloniferum (Nash) J. Wipff) embryogenic callus growing on solid medium was used to establish a cell suspension culture in Murashige and Skoog (MS) basal medium supplemented with 1.5 mg l−1 (6.8 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), 0.2 mg l−1 (0.88 μM) 6-benzylaminopurine (BA), 0.5 mg l−1 (1.4 μM) zeatin, 0.2 mg l−1 (0.58 μM) gibberellic acid (GA3), and 10% (v/v) of coconut water (CW). Pro-embryos from suspension culture matured on semi-solid MS medium in about 18 wk, and were then cultured on semi-solid MS medium without growth regulators for 2–3 wk. Shoots were regenerated on MS basal medium supplemented with 3.0 mg L−1 (13.6 μM) 2,4-D, 1.0 mg l−1 (4.4 μM) BA, 1.0 mg l−1 (2.9 μM) GA3, 0.5 mg l−1 (2.7 μM) 1-naphthaleneacetic acid (NAA), 500 mg l−1 easein hydrolysate, and 10% (v/v) CW. Rooted plantlets were successfully accelimatized to greenhouse and outdoor conditions. Using this protocol, it would be possible to produce at least 1300 fully acclimatized plantlets annually.  相似文献   

3.
Summary Root apices from in vitro cultured garlic (Allium sativum) cloves of cvs. ABEN and GT96-1 were used as axenic explants for organogenic callus production and plant regeneration experiments. Explants cultured in media based on those of Chu and co-workers (N6) or Murashige and Skoog (MS) could induce organogenic callus after 8 wk culture in darkness. Both media were supplemented with 2,4-dichlorophenoxyacetic acid (2.2–4.5 μM), alone or combined with 6-furfurylaminopurine (kinetin, 2.3–4.6 μM). Shoots started to grow 3 wk after culturing in the presence of light and the addition to culture media of 4.4 μM N6-benzyladenine. Plants capable of producing microbulbs regenerated 6 wk later. Up to 170 plants g−1 FW callus were obtained when culturing was initiated in MS medium supplemented with 4.6 μM kinetin and 4.5 μM 2,4-dichlorophenoxyacetic acid.  相似文献   

4.
Summary Two protocols for clonal propagation of kurrat (Allium ampeloprasum var.kurrat) using explants from the basal plates of mature plants are described. In direct formation, explants were cultured in Murashige and Skoog (MS) medium and supplemented with either benzyladenine at 0.0 or 4.4 μM, or supplemented with 7.0 μM benzyladenine and 0.1 μM naphthaleneacetic acid. Shoots appeared after 4 wk of culture. In the two-step procedure, explants were cultured first on MS medium supplemented with 1.4 μM 2,4-dichlorophenoxyacetic acid and 1.4 μM kinetin, and incubated in the dark for 4 wk. They were then transferred to MS medium supplemented with 4.4 μM benzyladenine for shoot formation. All shoots were rooted on MS medium containing 5 g·liter−1 activated charcoal. Normal viable plants were successfully established in soil.  相似文献   

5.
Summary An improved procedure has been developed for clonal growth of normal human epidermal keratinocytes (HK) without feeder cells or conditioned medium. The use of medium 199, supplemented with 0.4 μg/ml hydrocortisone (HC) and 20% (v/v) whole fetal bovine serum (wFBS) and conditioned overnight by 3T3 cells, eliminated the need for a feeder layer of lethally irradiated 3T3 cells for HK growth. Several other media with equivalent conditioning and supplementation failed to support satisfactory multiplication of HK, including Dulbecco's modified Eagle's medium, which is normally used for growth of HK with a feeder layer. Increasing the concentration of HC to 10 μg/ml (2.8×10−5 M) made possible clonal growth of HK without any conditioning of the medium. The addition of 10−5 M putrescine, 10−5 M vitamin B12, or 3.7×10−6 M β-estradiol further enhanced growth in unconditioned medium. Substantially greater improvement was obtained by the addition of pituitary extract or fractions prepared from pituitary extract. In medium 199 supplemented with 10 μg/ml HC, 20% (v/v) wFBS, and 0.15 mg/ml each of two pituitary fractions, single HK attach with a colony-forming efficiency equal to that in conditioned medium and form stratified, keratinized colonies that grow to confluency and can be subcultured. These results make it clear that HK do not require special “conditioning factors” from fibroblasts for clonal growth and differentiation in culture. Thus, factors directly involved in growth and the expression of differentiation can be analyzed without the interfering effects of any other type of cell. Preliminary studies with epidermal growth factor (EGF), which stimulates growth and extends life span of HK grown in the presence of fibroblasts, have shown that, in the absence of fibroblasts, EGF has no effect either on clonal growth or on cumulative multiplication potential of HK. This paper contains material from a thesis submitted to the Graduate School of the University of Colorado, Boulder, by Donna M. Peehl in partial fulfillment of the requirements for the Ph.D. degree. This work was supported by Grant CA 15305 from the National Cancer Institute and Grant AG 00310 from the National Institute on Aging.  相似文献   

6.
Summary Chili pepper (Capsicum annuum L., cv. Tampique?o 74) cell suspensions were employed to study the influence of phenylalanine and phenylpropanoids on the total production of capsaicinoids, the hot taste compounds of chili pepper fruits. The effect of capsaicinoid precursors and intermediates on the accumulation of lignin as an indicator of metabolic diversion was also investigated. Addition of 100 μM of either phenylalanine, cinnamic or caffeic acids to chili pepper cell cultures did not cause significant increases in total capsaicinoids (expressed as capsaicin content, and calculated as averages of the measured values) during the growth cycle. The highest total capsaicinoid content was recorded in cultures grown in the presence of vanillin (142.61 μg g−1 f.wt.), followed by cells treated with 100 μM vanillylamine (104.88 μg g−1 f.wt.), p-coumaric acid (72.36 μg g−1 f.wt.). and ferulic acid (34.67 μg g−1 f.wt.). Capsaicinoid content for control cells was 13.97 μg g−1 f.wt. Chili pepper cell suspensions cultured in the presence of 100 μM of either phenylalanine, or cinnamic, caffeic, or ferulic acids, or the same concentration, of vanillin and vanillylamine, did not exhibit statistically significant differences in the content of lignin as compared with control cells. However, addition of p-coumaric acid (100 μM) to the cultute medium significantly increased thelignin production (c. 10–15 times the contents of control cells).  相似文献   

7.
Summary Primary and passaged cultures of normal colon epithelial cells, derived from human fetuses (13 to 17 wk of conceptual age) have been established. These cultures have been passaged 16 times thus far. The cultures have been initiated and maintained in medium consisting of 50% Dulbecco's minimum essential medium and 50% Ham's F12 medium and supplemented with antibiotics (penicillin, 100 U/ml; streptomycin, 100 μg/ml); ascorbic acid, 40 μg/ml;l-isoleucine, 50 μg/ml; epidermal growth factor, 20 ng/ml; insulin, 5 μg/ml; cholera toxin, 5 ng/ml; transferrin, 1 μg/ml; fetal bovine serum (10%); and HEPES, 25 mM final concentration, and incubated at 37°C in humidified gas containing 5% CO2: 95% air. The cellular and subcellular characteristics of primary and passaged cultures were defined using light microscopy and scanning and transmission electron microscopy. The cells exhibited microvilli on cell surfaces and showed junctional complexes and interdigitations between cells. Indented nuclei with dense chromatin and marginated heterochromatin, numerous mitochondria, rough endoplasmic reticulum, polysomes, and extensive Golgi zones were conspicuous. Also, periodic acid Schiff's reagent-positive staining of the cells suggests the active synthesis of complex mucopolysaccharides in the cytoplasm. This study was supported by USPHS Grant CA-30185 from the National Large Bowel Cancer Project, National Cancer Institute.  相似文献   

8.
Summary Axillary and terminal buds from suckers of Ananas comosus cv. Phuket were established on Murashige and Tucker-based (MT) medium with 2.0 mgl−1 (9.8 μM) indolebutyric acid, 2.0 mgl−1 (10.74 μM) naphthaleneacetic acid, and 2.0 mgl−1 (9.29 μM) kinetin, followed by multiplication on Murashige and Skoog-based (MS) medium containing 2.0 mgl−1 (8.87 μM) benzyladenine (BA) to provide a continuous supply of axenic shoots. Leaves, excised from such cultured shoots, produced adventitious shoots from their bases when these explants were cultured on MS medium containing 0.5 mgl−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mgl−1 (8.87 μM) BA. Embryogenic callus was produced when leaf explants were cultured on MS medium with 3.0 mgl−1 (12.42 μM) 4-amino-3,5,6-trichloropicolinic acid (picloram). Somatic embryos developed into shoots following transfer of embryogenic tissues to MS medium with 1.0 mgl−1 (4.44 μM) BA. Cell suspensions, initiated by transfer of embryogenic callus to liquid MS medium with 1.0 mgl−1 (4.14 μM) picloram or 1.0 mgl−1 (4.52 μM) 2,4-D, also regenerated shoots by somatic embryogenesis, on transfer of cells to semisolid MS medium with 1.0 mgl−1 (4.44 μM) BA. All regenerated shoots rooted on growth regulator-free MS medium, prior to ex vitro acclimation and transfer to the glasshouse. These studies provide a baseline for propagation, conservation, and genetic manipulation of elite pineapple germplasms.  相似文献   

9.
Summary Cell viability, cytochrome P-450 content, cell respiration, and lipid peroxidation were all investigated as a function of oxygen tension in adult rat hepatocytes in short-term culture (less than 9 h). The various oxygen tensions used in this study were obtained by equilibrating culture medium with air, air + nitrogen, or air + oxygen. Cell viability, as assessed by trypan blue exclusion, was significantly greater at all time points tested when hepatocytes were cultured in Ham's F12 medium containing 132 μM O2, as compared to medium equilibrated with air (220 μM O2) or air + oxygen (298 μM O2). Cells cultured in 220 μM O2 (air) also exhibited a gradual loss of cytochrome P-450, so that by 9 h of incubation less than 60% of the active material remained. This loss of P-450 was minimized when cells were cultured in 163 μM O2 and abolished when cells were cultured in 132 μM O2. The 132 μM O2 exposure conditions also maintained cell respiration at the 1 h incubation values, whereas there was a continuous loss in cell respiration over time when the cells were cultured in either 220 μM O2 (air) or 298 μM O2 (air:O2). These cytotoxicity findings may be related to oxidative cell damage inasmuch as it was additionally demonstrated that lipid peroxidation (as measured by malondieldehyde equivalents) was consistantly lower in hepatocytes cultured in air:N2 as compared to air or air:O2. These results suggest that hepatocyte culture in low oxygen tension improves not only cell viability but also maintains other functional characteristics of the cell. This work was supported by a Biomedical Research Support Grant S-S07-RR 05448 awarded to the University of Minnesota School of Public Health by the Biomedical Research Grant Program, Division of Research and Resources, National Institutes of Health, Bethesda, MD.  相似文献   

10.
Summary Micropropagation of Arnica montana L. using Murashige and Skoog (MS) medium supplemented with N6-[2-isopentenyl]adenine (2iP), zeatin and α-naphthaleneacetic acid (NAA) in different concentrations does not ensure the formation of a high number of regenerated plants; a maximum of 3.2 neoplantlets per explant were obtained. After 4 wk of culture on medium with zeatin (4.5 μM) and NAA (5.3 μM), plants were 3.06 cm in length. The following step was to improve the clonal propagation of this species. Micropropagation of Arnica montana L., initiated from nodal segments using semisolid media (4 g l−1 agar), was obtained. Explants were inoculated on MS medium supplemented with NAA (5.3 μM), 2iP (5.0 μM), maize extract (1.0 ml l−1), phloroglucinol (0.6 mM) or adenine sulfate (0.2 mM). Only 3 wk after the inoculation, plant multiplication as well as induction of roots were obtained, the optimal variant being that containing NAA (5.3 μM), 2iP (5.0 μM) and maize extract (1.0 ml l−1). Six weeks after the inoculation plants were transferred to Perlite, with 80% plant survival being obtained. By isoesterase pattern we concluded that we have obtained the clonal propagation of Arnica montana, because the pattern of several individuals belonging to different clones was the same. Only one region with esterase activity that is present in all individuals has been identified.  相似文献   

11.
Summary Plantlet regeneration of salgare?o pine (Pinus nigra Arn. ssp.salzmannii (Dunal) Franco) was achieved from cotyledons. The data showed that the best differentiation response occurred when cotyledons, from 1-d-old embryos germinated in darkness, were cultured on Murashige and Skoog medium (half-strength macroelements) with 22 μM N6-benzyladenine (BA) and 0.05 μM α-naphthaleneacetic acid (NAA) for 2–3 wk. Shoot development was obtained by subculturing treated explants on the same medium without growth regulators. Shoots were successfully micropropagated by sequential subculturing them on medium containing growth regulators (5 μM BA and 0.005 μM NAA) and on hormone-free medium for 2 and 12 wk, respectively. To induce adventitious roots, shoots were treated with 3 μM NAA, and 8 μM indole-3-butyric acid for 2 wk, followed by transfer to Murashige and Skoog medium (1/4-strength macroelements, 20 g·L−1 sucrose) without growth regulators. After 3–4 wk, almost all the rooted shoots (65%) could be successfully transplanted and acclimatizated in the greenhouse, where the plants exhibited normal growth habit.  相似文献   

12.
Summary Culture media, environmental and genotypic factors affecting regeneration from multi-shoot cultures derived from corn seedling apical explants were investigated. The frequency of shoot regeneration was highes for seedlings that were 4–5 cm in length. Flow cytometry was used to show that the most responsive culturs contained a high proportion of cells in the G1 phase. Proline in the multi-shoot induction medium (MSI) significantly increased the shoot induction frequency. Continuous low light (30–40 μEm−2s−1) stimulated multi-shoot induction. The highest number of multi-shoots developed in medium containing 4 gl−1 proline, 2 mgl−1 (8.8 μM) 6-benzylaminopurine (BA), and 1 mgl−1 (4.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Multi-shoots were induced in this culture system from 44 of 45 corn genotypes and approximately 70% of the genotypes exhibited a high to moderate response (greater than 20 shoots per explant in 4 wk of culture). This culture procedure is an efficient and widely applicable method for corn regeneration that may be a useful target for transformation.  相似文献   

13.
Summary An efficient and simple plant regeneration system via organogenesis from leaf segments of persimmon (Diospyros kaki Thunb.) cultivars ‘Fuyu’ and ‘Nishimurawase’ has been developed. The regeneration capacity was influenced by the culture vessels, gelling agents, plant growth regulators, and light conditions. Leaf explants taken from in vitro shoots were cultured on a modified Murashige and Skoog medium (MS1/2N), for 16 wk without transfer to fresh medium. Adventious shoots appeared after 4 and 8 wk in culture of ‘Nishimurawase’ and ‘Fuyu’ tissues, respectively. The culture of leaf explants in Erlenmeyer flasks with medium containing 4 g l−1 agar enhanced shoot formation in comparison to media with increased agar concentrations. Optimal shoot regeneration was obtained with 5 mg l−1 (22.8 μM) zeatin and 0.1 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for ‘Nishimurawase’, and 10 mg l−1 (45.6 μM) zeatin and 0.1 mg l−1 (0.05 μM) IBA for ‘Fuyn’. Shoot regeneration frequencies in both cultivars were 100%, and shoot numbers per explant reached up to 9.2 for ‘Nishimurawase’ and 2.2 for ‘Fuyu’. Dark incubation during the first 4–5 wk was the most effective condition to successfully influence shoot regeneration in both cultivars. While dark incubation was essential for adventitious shoot formation by ‘Fuyu’, it was only slightly beneficial to ‘Nishimurawase’. More than 80% of the regenerated shoots rooted within 4 wk on hormone-free MS1/2N demium after having been dipped for 30 s in 250 mg l−1 (1.1. mM) IBA solution.  相似文献   

14.
Summary As a first step towards applying biotechnology to blue grama, Bouteloua gracilis (H. B. K.) Lag. ex Steud., we have developed a regenerable tissue culture system for this grass. Shoot apices were isolated from 3-d-old seedlings and cultured in 15 different growth regulator formulations combining 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (4-amino-3, 5,6-trichloropicolinic acid), N6-benzyladenine (BA) or adenine (6-aminopurine). The highest induction of organogenic callus was obtained with formulations containing 1 mg l−1 (4.52 μM) 2,4-D plus 0.5 mg l−1 (2.22 μM) BA. and 2 mg l−1 (8.88 μM) BA plus 1 mg l−1 (4.14 μM) Picloram with or without 40 mg l−1 (296.08 μM) adenine. Lower frequencies of induction were obtained for embryogenic as compared to organogenic callus. The most efficient treatments for induction of embryogenic callus contained 2 mg l−1 (9.05 μM) 2,4-D combined with 0.25 (1.11 μM) or 0.50 mg l−1 (2.22 μM) BA, or 1 mg l−1 (4.52 μM) 2,4-D with 0.50 mg l−1 (2.22 μM) BA. Regeneration was achieved in hormonefree Murashige anmd Skoog (MS) medium, half-strength MS medium or MS medium plus 1 mg l−1 (1.44 μM) gibberellic acid. The number of plantlets regenerated per 500 mg callus fresh weight on MS medium ranged from 9 for 2 mg l−1 (9.05 μM) 2,4-D to 62.2 for induction medium containing 2 mg l−1 (8,28 μM) Picloram, 1 mg l−1 (4.44 μM) BA and 40 mg l−1 (296.08 μM) adenine. Regnerated plants grown in soil under greenhouse conditions reached maturity and produced seeds.  相似文献   

15.
Summary Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.  相似文献   

16.
Summary The resting membrane potential of the cultured fibroblasts derived from rabbit subcutaneous tissues was −10.2±0.20 mV (n=390). This potential was affected by the potassium concentration in the culture medium, but not by other chemical or hormonal preparations, such as dibutyryladenosine 3′,5′-cyclic monophosphate (0.5 to 5.0 mmol/l), sodium fluoride (10−5 to 10−4 M), hydrocortisone (10−7 to 10−6 M), parathyroid extract (0.5 to 1.0 U/ml), or thyrotrophin (5 to 10 mU/ml). The Na+, K+, and Cl concentrations of the cultured fibroblasts were 35.4, 85.7, and 22.6 mmol/l cell water, respectively. The water and protein contents of these cells were 82.1 and 9.18 g/100-g cells, respectively. The intracellular pH of fibroblasts as determined by [14C] dimethyloxazolidine-2, 4-dione, and3H2O ranged between 6.9 and 7.1 when the pH of the culture medium was maintained at 7.4. The activiities of Na+, K+-, HCO3 -, and Ca++, Mg++-ATPases in these cultured cells were 19.0±2.1, 13.6±2.1, and 6.6±1.2 nmol pi/mg protein per minute, respectively, and the carbonic anhydrase activity was 0.054 U/mg protein. Calculations based on the values for the membrane potential and the electrolyte concentrations observed in this study indicate that Na+, K+, Cl, and H+ are not distributed according to their electrochemical gradients across the cell membrane. Na+, Cl, and H+ are actively transported out of the cells and K+ into the cells. This study was supported by Grant AM20935 from the NIAMDD, NIH, Bethesda, Maryland, and National Aeronautics & Space Administration NASA-Ames Grant NAG 2-108 and U.S. Department of Energy Contract DE-AC02-76-EV-00119. D. M. W. is the recipient of a Research Career Award (5-K6-NB-13838), NINCDS, NIH.  相似文献   

17.
Summary This study was undertaken to examine the influence of time and volume of collagen overlay, type of media, and media additives on taurocholate (TC) accumulation and biliary excretion in hepatocytes cultured in a collagen-sandwich configuration. Hepatocytes were isolated from male Wistar rats by in situ perfusion with collagenase, seeded onto collagencoated 60-mm dishes, overlaid with gelled collagen, and cultured for 4 d. Experiments to examine the influence of time and volume of collagen overlay were conducted in Dulbecco's modified Eagle's medium (DMEM)+1.0μM dexamethasone (DEX)+5% fetal bovine serum (FBS). Hepatocytes were overlaid at 0 h with 0.1 or 0.2 ml collagen, or at 24 h with 0.1 or 0.2 ml collagen. The influence of media type and additives was examined in hepatocytes overlaid at 0 h with 0.2 ml collagen and incubated in DMEM+0.1μM DEX, DMEM+0.1μM DEX+5% FBS, Williams' medium E+0.1μM DEX+1% ITSΘ+, DMEM +1.0μM DEX, DMEM+1.0 μM DEX+5% FBS, or modified Chee's medium (MCM)+0.1 μM DEX+1% ITSГ+. [3H] TC accumulation by hepatocytes in Hank's balanced salt solution (HBSS) and Ca2+-free HBSS was measured, and the biliary-excretion index (BEI: percentage of accumulated TC localized in the canalicular compartment) was calculated. Light microscopy and carboxydichlorofluorescein fluorescence were employed to examine the cellular and canalicular morphologies. The volume of collagen used for both the substratum and the overlay did not affect TC accumulation or biliary excretion. The BEI tended to be higher in cells overlaid at 24 h (BEI=0.649 [0.1 ml collagen]; BEI=0.659 [0.2 ml collagen]) compared with those overlaid at 0 h after seeding (BEI=0.538 [0.1 ml collagen]; BEI=0.517 [0.2 ml collagen]), although the differences were not statistically significant. Hepatocytes cultured in MCM produced consistently the lowest BEI of TC (BEI=0.396). Differing DEX concentration (0.1 μM versus 1.0 μM) with or without 5% FBS did not appear to have a significant effect on the BEI of TC.  相似文献   

18.
Summary Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 μg/ml), transferrin (5 μg/ml), hydrocortisone (10 μg/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10−9 M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. This work was supported by grants from the Medical Research Council of Canada; the Department of Medicine, University of Toronto; and the National Cancer Institute of Canada. J. E. E. is a C.H. Best Foundation and Department of Medicine postdoctoral fellow.  相似文献   

19.
Summary A method of plant regeneration from hypocotyl segments of Platanus acerifolia Willd, has been developed. Hypocotyl slices were cultured on Murashige and Skoog (MS) basal medium supplemented with a range of combinations of cytokinins [6-benzyladenine (BA) or kinetin] and auxins [indole-3-butyric acid (IBA), indole-3-acetic acid, α-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid] for adventitious shoot induetion. The highest regeneration frequency was obtained with MS medium containing 2.0 mg l−1 (8.88 μM) BA and 0.5 mg l−1 (2.46 μM) IBA. Adventitious buds and shoots were differentiated from hypocotyl-derived cellus or directly from the wounded sites within 4–8 wk. The regenerated shoots were elongated and proliferated efficiently on multiplication medium. Complete plantlets were transplanted to the soil and grew normally in the greenhouse after root formation on rooting medium for 4–6 wk.  相似文献   

20.
Summary A serum-free medium (HMRI-2) has been developed for the outgrowth and subculture of epithelial cells from normal adult human ureter and bladder. Medium HMRI-2 consists of Ham’s MCDB 152 with double the amounts of the essential amino acids in Stock 1, low Ca2+ (0.06 mM) and is supplemented with epithelial growth factor, 5 ng/ml; transferrin, 5 μg/ml; insulin, 5 μg/ml; ethanolamine and phosphoethanolamine, 0.1 mM each; hydrocortisone, 2.8×10−6 M; and bovine pituitary extract, 126 μg protein/ml. The cultured cells showed ultrastructural markers of epithelial cells (prekeratin fibers, tonofilaments, surface microvilli with glycocalyx), exhibited ABO antigens, and had a normal human diploid karyotype. Primary cultures could be subcultured and also cryopreserved in HMRI-2 in liquid nitrogen. Cells in mass cultures showed a population doubling time of 40.5±4.5 h and had a maximum in vitro life span of 20 to 25 population doublings. It was observed that primary outgrowths, secondary cultures, and even cryopreserved cells all retained the capacity to respond to high Ca2+ and serum by differentiation and desquamation. This study has resulted in the availability of easily obtainable serum-free epithelial cultures from normal adult human ureter and bladder. The useful in vitro life span of these cultures may be important in future studies of carcinogenesis. This work was supported by a grant from the National Cancer Institute (R01CA25089), Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号